MHB Partial Order Relation on Positive Rational Numbers and Numbers Greater Than 1/2

  • Thread starter Thread starter sbrajagopal2690
  • Start date Start date
  • Tags Tags
    Functions Relations
AI Thread Summary
The discussion focuses on the relation r defined on the set of positive rational numbers Q+, where (x,y) ∈ r if x/y is an integer. Participants are tasked with demonstrating that r is a partial order by proving reflexivity, antisymmetry, and transitivity. Additionally, they need to identify all positive rational numbers greater than 1/2 within this relation. A suggestion is made to analyze the fraction p/q, where p and q are coprime, to derive insights about their relationship when greater than 1/2. The conversation emphasizes the mathematical properties of the relation and the implications for identifying specific rational numbers.
sbrajagopal2690
Messages
2
Reaction score
0
need help on this ..any suggestions are highly appreciatedConsider the set of positive rational numbers Q+ . Consider the relation r defined by
(x,y) ∈ r<=> x/y ∈ Z. Show that r is a partial order and determine all numbers greater than 1/2.
 
Physics news on Phys.org
Re: relations and functions

sbrajagopal2690 said:
Consider the set of positive rational numbers Q+ . Consider the relation r defined by (x,y) ∈ r<=> x/y ∈ Z. Show that r is a partial order and determine all numbers greater than 1/2.
You must show that this relation is
a R a (reflexivity) for all;
if a R b and b R a then a = b (antisymmetry);
if a R b and R ≤ c then a R c (transitivity).

I have no idea what "determine all numbers greater than 1/2" could mean?
 
sbrajagopal2690 said:
... determine all numbers greater than 1/2.
Suppose that $p/q$ is greater than $1/2$ in this ordering (where $p/q$ is a fraction in its reduced form, so that $p$ and $q$ have no common factors other than $1$). Then $\left.\frac12\middle/\frac pq\right.$ is an integer. Simplify that compound fraction and see what that tells you about $p$ and $q$.
 
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
Back
Top