- #1
yucheng
- 232
- 57
- TL;DR Summary
- Trace paradox?
From Rand Lectures on Light, we have, in the interaction picture, the equation of motion of the reduced density matrix:
$$i \hbar \rho \dot_A (t) = Tr_B[V(t), \rho_{AB}(t)] = \Sigma_b \langle \phi_b | V \rho_{AB} -\rho_{AB} V | \phi_b \rangle = \Sigma_b \phi_b | \langle V \rho_{AB} | \phi_b \rangle - \langle \phi_b| \rho_{AB} V | \phi_b \rangle = Tr_B(V \rho_AB) - Tr_B(\rho_AB V) = 0???$$
$$i \hbar \rho \dot_A (t) = Tr_B[V(t), \rho_{AB}(t)] = \Sigma_b \langle \phi_b | V \rho_{AB} -\rho_{AB} V | \phi_b \rangle = \Sigma_b \phi_b | \langle V \rho_{AB} | \phi_b \rangle - \langle \phi_b| \rho_{AB} V | \phi_b \rangle = Tr_B(V \rho_AB) - Tr_B(\rho_AB V) = 0???$$