B Particle creation and annihilation

AI Thread Summary
When an electron and positron annihilate, they produce two photons that move in opposite directions to conserve linear momentum. This is a confirmed phenomenon, but it's important to cite credible sources when discussing scientific concepts. For pair production, two photons are typically required, each with energy greater than 511 keV, to ensure conservation of energy and momentum. Alternatively, one photon can facilitate pair production if it has energy exceeding 1022 keV and interacts with an atom, which helps balance momentum. Thus, both energy and momentum conservation are crucial in these particle interactions.
DiracPool
Messages
1,242
Reaction score
515
I read somewhere that when, say, an electron and positron annihilate, they create two photons which travel in opposite directions in order to conserve linear momentum. Is this true? What about pair production. Do you likewise need two photons to do this? Or, can you do it with one photon provided it has enough energy?
 
Physics news on Phys.org
DiracPool said:
I read somewhere that when, say, an electron and positron annihilate, they create two photons which travel in opposite directions in order to conserve linear momentum. Is this true?
Yes, it is true, but “I read somewhere” isn’t a good reference. You should usually explicitly state where you read it.

DiracPool said:
Do you likewise need two photons to do this? Or, can you do it with one photon provided it has enough energy?
Both energy and momentum must be conserved (as well as charge, spin, etc). So one photon cannot do it.

You need two photons with opposite momentum and each with >511 keV energy, or a photon with >1022 keV energy and an atom. In the latter case the atom can take any leftover momentum.
 
  • Like
Likes vanhees71, topsquark and DiracPool
Pair production with one photon takes place when in the presence of a nucleus making the needed momentum, etc. balance.
 
  • Like
Likes vanhees71 and DiracPool
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top