Particle motion + electric field when voltage varies

In summary: But maybe you want to use that form to see the structure more clearly. You have an expression for the angle of incidence from that equation.
  • #1
RmsAdd
2
0

Homework Statement


Two parallel plates located at a distance "L" from each other they maintain a potential difference "V" because of a battery (as shown in the picture). Through a small hole, made in bottom plate, electrons get into system (with mass "m" and charge "-e"), with velocity "v" and forming a θ angle with the perpendicular direction of the plate. A flourescent screen at the top plate allows to determine where the electrons impact.

If there is a small change dV at the potential difference betwen the plates. Where and how much the position where electrons impact varies? (Do not matter about relativism effects and cuatic effects). Make a scheme about the dependency of that variation with the velocity v and the angle θ.
Picture.PNG


Dos placas paralelas situadas a distancia L una de la otra, se mantienen a una diferencia de potencial V por medio de una batería, como muestra la figura. Por un pequeño orificio practicado en la placa de abajo ingresan electrones (de masa m y carga -e), con una velocidad v y formando un angulo θ con la dirección perpendicular a la placa. Una pantalla fluorescente en la placa de arriba permite determinar dónde inciden los electrones.
Si se produce un pequeño cambio dV en la diferencia de potencial entre las placas, ¿Cómo y cuanto varía la posición donde inciden los electones? (despreciar efectos relativistas y cuánticos). Realizar un grafico esquematico que ilustre la dependencia de esta variación con la velocidad v y el angulo θ
problem.png

Homework Equations

The Attempt at a Solution


Energy analisis:

The initial energy and the final energy have to be the same.
[tex]E_{f}=E{i}[/tex]
[tex]E_{kf}=E_{ki}+U_{e}[/tex]
[tex]\frac12 \cdot m \cdot v_{f}^{2}=\frac12 \cdot m \cdot v_{i}^{2}+F_{e} \cdot L[/tex]
[tex]v_{f}=\sqrt{ v_{i}^{2}+ \frac{2 \cdot F_{e} \cdot L}{m}}\qquad \text{(1)}[/tex]

Motion analisis:

[tex]\Sigma F_{x}=0[/tex]
[tex]v_{x}=constant[/tex]
[tex]\Sigma F_{y}=m \cdot \vec{a}[/tex]

So we have a constant uniform motion in x-axis and a constant aceleration in y-axis. I can find the final velocity in y-axis using Pythagorean teorem
pitagoras.png

[tex]v_{f}^2=v_x^2 + v_{fy}^2[/tex]
[tex]v_{fy}=\sqrt{v_f^2 - v_x^2}[/tex]

In y-axis aceleration is constant so I can do:
[tex]V_{m}=\frac{v_{fy}+v_{iy}}{2}[/tex]
[tex]V_{m}=\frac{\Delta y}{\Delta t}[/tex]
[tex]\Delta t=\frac{2 \Delta y}{v_{fy}+v_{iy}} \qquad \text{(2)}[/tex]
This is the time that it takes to the particle in order to reach the top plate. I can use [itex]\Delta t[/itex] to get x-axis distance.
[tex]v_x=\frac{\Delta x}{\Delta t}[/tex]
[tex]x=v_x \cdot \Delta t[/tex]

Replacing with (2):
[tex]x=v_x \cdot \frac{2 \Delta y}{v_{fy}+v_{iy}}[/tex]
[tex]\Delta y=L[/tex]
[tex]v_x=\sin \theta \cdot v_i[/tex]
[tex]x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_f^2-v_x^2}+v_i \cdot \cos \theta}[/tex]

Replacing vf with (1) and replacing vx:
Edit: I've made a mistake replacing vx^2
[tex]x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_i^2+\frac{2 \cdot F_e \cdot L}{m}-\sin^2 \theta \cdot v_f^2}+v_i \cdot \cos \theta}[/tex]

[tex]x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_i^2+\frac{2 \cdot F_e \cdot L}{m}-\sin^2 \theta \cdot \left(v_i^2+\frac{2 \cdot F_e \cdot L}{m} \right)}+v_i \cdot \cos \theta}[/tex]
[tex]x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_i^2+\frac{2 \cdot F_e \cdot L}{m}-\sin^2 \theta \cdot v_i^2 + \sin^2 \theta \cdot \frac{2 \cdot F_e \cdot L}{m}}+v_i \cdot \cos \theta}[/tex]
[tex]x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_i^2(1- \sin^2 \theta) +\frac{2 \cdot F_e \cdot L}{m}(1+\sin^2 \theta)}+ \cos \theta \cdot v_i}[/tex]

[tex]x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_i^2+\frac{2 \cdot F_e \cdot L}{m}-\sin^2 \theta \cdot v_i^2}+v_i \cdot \cos \theta}[/tex]
[tex]x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_i^2 \left( 1+ \frac{2 \cdot F_e \cdot L}{m \cdot v_i^2}-\sin^2 \theta \right) }+v_i \cdot \cos \theta}[/tex]
[tex]x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{v_i \sqrt{ 1+ \frac{2 \cdot F_e \cdot L}{m \cdot v_i^2}-\sin^2 \theta }+v_i \cdot \cos \theta}[/tex]
[tex]x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{v_i \left( \sqrt{ 1+ \frac{2 \cdot F_e \cdot L}{m \cdot v_i^2}-\sin^2 \theta }+ \cos \theta \right)}[/tex]
[tex]x=\frac{2 \cdot L \cdot \sin \theta}{\sqrt{ 1+ \frac{2 \cdot F_e \cdot L}{m \cdot v_i^2}-\sin^2 \theta }+ \cos \theta}[/tex]

Finally I know that:
[tex]V=\frac{U_e}{q}=\frac{F_e \cdot L}{q}[/tex]
[tex]F_e \cdot L=V \cdot q[/tex]

[tex]x=\frac{2 \cdot L \cdot \sin \theta}{ \sqrt{ 1+ \frac{2 \cdot V \cdot q}{m \cdot v_i^2}-\sin^2 \theta }+ \cos \theta}[/tex]

Now I've an equation which gives me the position as function of voltage. Can I do [itex]\frac{\partial x}{\partial V}[/itex] in order to obtain how much the position varies in relation with small variation [itex]\partial V[/itex]?

Am I doing it in a adequated way (I think that it's a really ugly equation)? Or should I consider other factors?
 

Attachments

  • Picture.PNG
    Picture.PNG
    1.2 KB · Views: 287
  • problem.png
    problem.png
    40.8 KB · Views: 534
  • pitagoras.png
    pitagoras.png
    2 KB · Views: 240
Last edited:
Physics news on Phys.org
  • #2
Your idea is correct. However, you have some errors in your derivation of ##x(V)##. For example, you have used ##v_x^2 = v_f^2 \sin^2\theta## rather than ##v_x^2 = v_i^2 \sin^2\theta##.
 
  • Like
Likes RmsAdd
  • #3
Thank you very much @Orodruin !
I corrected it.
Then I've to do [itex]\frac{\partial x}{\partial V}[/itex].
[tex]x(V)=\frac{2 \cdot L \cdot \sin \theta}{ \sqrt{ 1+ \frac{2 \cdot V \cdot q}{m \cdot v_i^2}-\sin^2 \theta }+ \cos \theta}[/tex]
[tex]\frac{\partial x}{\partial V} = \frac{ \frac{-2L \sin \theta \cdot \frac{2q}{m \cdot v_i^2} }{2 \sqrt{1+\frac{2Vq}{m \cdot v_i^2}-\sin^2 \theta}} }{ \left( \cos \theta + \sqrt{1+\frac{2Vq}{m \cdot v_i^2} - \sin^2 \theta } \right)^2 }[/tex]
[tex]\frac{\partial x}{\partial V} = \frac{ -2Lq \sin \theta }{ m \cdot v_i^2 \left( \cos \theta + \sqrt{1+\frac{2Vq}{m \cdot v_i^2}-\sin^2 \theta } \right) ^2 \sqrt{ 1+\frac{2Vq}{m \cdot v_i^2}-\sin^2 \theta } }[/tex]

Does that equation answers the question about "Where and how much the position where electrons impact varies" or should I find something else?
 
Last edited:
  • #4
RmsAdd said:
cuatic effects
For your information, the English is "quantum effects".
I would have treated it like a gravitational trajectory question, using the SUVAT equations, but it's probably no simpler.
You could simplify your final expression a bit by collapsing 1-sin2 to cos2 and creating a name for the group ##\frac{2q}{mv_i^2}##, which occurs in three places.
 
  • Like
Likes RmsAdd

FAQ: Particle motion + electric field when voltage varies

What is particle motion in an electric field?

Particle motion in an electric field refers to the movement of charged particles in response to an electric field. When a voltage is applied to a material, the electric field exerts a force on the charged particles within the material, causing them to move.

How does particle motion change when voltage varies?

The magnitude and direction of particle motion is directly influenced by the voltage applied to the material. As the voltage varies, the strength of the electric field also changes, leading to changes in the speed and direction of particle motion.

What is the relationship between voltage and electric field in particle motion?

Voltage and electric field are closely related in particle motion. The electric field is directly proportional to the voltage, meaning that as the voltage increases, so does the strength of the electric field. This ultimately affects the movement of charged particles within the material.

What factors affect particle motion in an electric field?

The main factors that affect particle motion in an electric field include the strength of the electric field, the mass and charge of the particles, and the type of material they are moving through. Additionally, external factors such as temperature and pressure can also have an impact on particle motion.

What practical applications does the study of particle motion and electric fields have?

The study of particle motion and electric fields has numerous practical applications, such as in the development of electronic devices, power generation and distribution systems, and medical technologies. It is also essential in understanding natural phenomena, such as lightning and auroras.

Back
Top