- #1
ledamage
- 36
- 0
It is often said that the field operator [tex]\hat{\phi}(x)[/tex] of some free field theory, e.g. Klein-Gordon or Dirac, acting on the vacuum state, creates "one particle localized at x" or "in a position eigenstate at x".
For example, from the Fourier expansion of the real Klein-Gordon field operator, we get
[tex]\hat{\phi}(x) |0\rangle = \int \mathrm{d}^3 \tilde{p} \: f_p^*(x) a^\dagger(p) |0\rangle \ , [/tex]
where [tex]\mathrm{d}^3 \tilde{p} \equiv \mathrm{d}^3 p/2p^0[/tex] is the Lorentz covariant measure and [tex]f_p(x)[/tex] are the plane wave solutions to the Klein-Gordon equation.
Now, this state could be regarded as a localized one-particle state if [tex]f_p^*(x)[/tex] is the ordinary QM position space wave-function of the particle in momentum eigenstate [tex]|\mathbf{p}\rangle[/tex], namely [tex]f_p^*(x)=\langle \mathbf{p} |\mathbf{x} \rangle[/tex]. Writing [tex]a^\dagger(p) |0\rangle \equiv |\mathbf{p}\rangle[/tex], the above equation would turn into
[tex]\hat{\phi}(x) |0\rangle = \int \mathrm{d}^3 \tilde{p} \: |\mathbf{p} \rangle \langle \mathbf{p} |\mathbf{x} \rangle \ ,[/tex]
which would somehow be related to [tex]|\mathbf{x}\rangle[/tex] since the first part resembles an identity operator. But two problems occur:
1. What is [tex]|\mathbf{x}\rangle[/tex]? While I can define the state of "one particle with momentum p" to be [tex]a^\dagger(p) |0\rangle \equiv |\mathbf{p}\rangle[/tex], I have no idea how a state like [tex]|\mathbf{x}\rangle[/tex] can canonically arise in a QFT. My only idea is to promote the equation
[tex]f_p^*(x)=\langle \mathbf{p} |\mathbf{x} \rangle[/tex]
to a defining axiom for [tex]|\mathbf{x}\rangle[/tex], that is, postulating that the free field solutions to the real Klein Gordon equation can be interpreted as one-particle wave functions in the ordinary QM sense. But this would mean you have to add a new axiom relating QM and QFT?!
2. I have some doubts that I can regard [tex]\int \mathrm{d}^3 \tilde{p} \: |\mathbf{p} \rangle \langle \mathbf{p} |[/tex] as an identity operator because of the covariant measure.
Can anyone help me? Thanks!
For example, from the Fourier expansion of the real Klein-Gordon field operator, we get
[tex]\hat{\phi}(x) |0\rangle = \int \mathrm{d}^3 \tilde{p} \: f_p^*(x) a^\dagger(p) |0\rangle \ , [/tex]
where [tex]\mathrm{d}^3 \tilde{p} \equiv \mathrm{d}^3 p/2p^0[/tex] is the Lorentz covariant measure and [tex]f_p(x)[/tex] are the plane wave solutions to the Klein-Gordon equation.
Now, this state could be regarded as a localized one-particle state if [tex]f_p^*(x)[/tex] is the ordinary QM position space wave-function of the particle in momentum eigenstate [tex]|\mathbf{p}\rangle[/tex], namely [tex]f_p^*(x)=\langle \mathbf{p} |\mathbf{x} \rangle[/tex]. Writing [tex]a^\dagger(p) |0\rangle \equiv |\mathbf{p}\rangle[/tex], the above equation would turn into
[tex]\hat{\phi}(x) |0\rangle = \int \mathrm{d}^3 \tilde{p} \: |\mathbf{p} \rangle \langle \mathbf{p} |\mathbf{x} \rangle \ ,[/tex]
which would somehow be related to [tex]|\mathbf{x}\rangle[/tex] since the first part resembles an identity operator. But two problems occur:
1. What is [tex]|\mathbf{x}\rangle[/tex]? While I can define the state of "one particle with momentum p" to be [tex]a^\dagger(p) |0\rangle \equiv |\mathbf{p}\rangle[/tex], I have no idea how a state like [tex]|\mathbf{x}\rangle[/tex] can canonically arise in a QFT. My only idea is to promote the equation
[tex]f_p^*(x)=\langle \mathbf{p} |\mathbf{x} \rangle[/tex]
to a defining axiom for [tex]|\mathbf{x}\rangle[/tex], that is, postulating that the free field solutions to the real Klein Gordon equation can be interpreted as one-particle wave functions in the ordinary QM sense. But this would mean you have to add a new axiom relating QM and QFT?!
2. I have some doubts that I can regard [tex]\int \mathrm{d}^3 \tilde{p} \: |\mathbf{p} \rangle \langle \mathbf{p} |[/tex] as an identity operator because of the covariant measure.
Can anyone help me? Thanks!
Last edited: