- #1
rsq_a
- 107
- 1
This seems to be an elementary question, but I rarely have to deal with rigor these days, so excuse me if there's a simple answer.
I'm looking for a theorem that will allow me to state,
[tex]
F(z) = \int_0^b \frac{f(\tau)}{\tau - z} d\tau \sim \int_0^b \frac{f(\tau)}{\tau} d\tau
[/tex]
as [itex]z \to 0[/itex] and [itex]f(\tau): \mathbb{C} \to \mathbb{C}[/itex], but it's real along the path of integration.
I believe [itex]f(\tau)[/tex] satisfies these properties:
Note that F(z) is well-defined and Holder continuous along the line because of the values of f at the endpoints.
An example would be,
[tex]
\int_0^1 \frac{\sqrt{\tau}}{\tau - z} d\tau
[/tex]
I'm looking for a theorem that will allow me to state,
[tex]
F(z) = \int_0^b \frac{f(\tau)}{\tau - z} d\tau \sim \int_0^b \frac{f(\tau)}{\tau} d\tau
[/tex]
as [itex]z \to 0[/itex] and [itex]f(\tau): \mathbb{C} \to \mathbb{C}[/itex], but it's real along the path of integration.
I believe [itex]f(\tau)[/tex] satisfies these properties:
- [itex]f(0) = 0[/itex] and [itex]f(b) = 0[/itex]
- [itex]f(\tau)[/itex] is Holder continuous along the path of integration
Note that F(z) is well-defined and Holder continuous along the line because of the values of f at the endpoints.
An example would be,
[tex]
\int_0^1 \frac{\sqrt{\tau}}{\tau - z} d\tau
[/tex]