- #1
spaghetti3451
- 1,344
- 34
In general,
##\displaystyle{\langle q_{f}|e^{-iHt/\hbar}|q_{i}\rangle=\int\mathcal{D}q(t)\ e^{iS[q]/\hbar}}##
and
##\displaystyle{\langle q_{f}|\hat{Q}(t)|q_{i}\rangle=\int\mathcal{D}q(t)\ e^{iS[q]/\hbar}}\ q(t).##How can one switch from the above expressions to the following?
##\displaystyle{\langle q_{f}|T\{\hat{Q}(t_{1})\hat{Q}(t_{2})\}|q_{i}\rangle=\int\mathcal{D}q(t)\ e^{iS[q]/\hbar}}\ q(t_{1})q(t_{2})##
In other words, why does the path integral compute time-ordered products?
##\displaystyle{\langle q_{f}|e^{-iHt/\hbar}|q_{i}\rangle=\int\mathcal{D}q(t)\ e^{iS[q]/\hbar}}##
and
##\displaystyle{\langle q_{f}|\hat{Q}(t)|q_{i}\rangle=\int\mathcal{D}q(t)\ e^{iS[q]/\hbar}}\ q(t).##How can one switch from the above expressions to the following?
##\displaystyle{\langle q_{f}|T\{\hat{Q}(t_{1})\hat{Q}(t_{2})\}|q_{i}\rangle=\int\mathcal{D}q(t)\ e^{iS[q]/\hbar}}\ q(t_{1})q(t_{2})##
In other words, why does the path integral compute time-ordered products?