- #1
- 2,810
- 605
Its usually said that the propagator ## K(\mathbf x'',t;\mathbf x',t_0) ## that appears as an integral kernel in integrals in the path integral formulation of QM, is actually the Green's function for the Schrodinger equation and satisfies the equation below:
## \left[ -\frac{\hbar^2}{2m} \nabla^{''2} +V(\mathbf x'')-i\hbar \frac{\partial}{\partial t} \right] K(\mathbf x'',t;\mathbf x',t_0)=-i\hbar \delta^3(\mathbf x''-\mathbf x')\delta(t-t_0)##.
My problem with this statement, is that the method of Green's functions is for solving inhomogeneous differential equations, but the Schrodinger equation is a homogeneous equation and I don't understand how using a Green's function can help us solve it. So I'm beginning to doubt that the above kernel is a green's function. But this is something that I read in lots of references. What's going on?
Thanks
## \left[ -\frac{\hbar^2}{2m} \nabla^{''2} +V(\mathbf x'')-i\hbar \frac{\partial}{\partial t} \right] K(\mathbf x'',t;\mathbf x',t_0)=-i\hbar \delta^3(\mathbf x''-\mathbf x')\delta(t-t_0)##.
My problem with this statement, is that the method of Green's functions is for solving inhomogeneous differential equations, but the Schrodinger equation is a homogeneous equation and I don't understand how using a Green's function can help us solve it. So I'm beginning to doubt that the above kernel is a green's function. But this is something that I read in lots of references. What's going on?
Thanks