- #1
rocdoc
Gold Member
- 43
- 3
I have found a general result for certain exponential integrals that may be of interest to those involved with using path integrals. I am not certain that I am applying it correctly but it appears to work, and I can reproduce results quoted in various textbooks , using it. This may however be coincidental.
The result is ,result 7.4.32 of Abramowitz and Stegun, see pg.303 of Reference 1. I quote
'$$\int e^{-(ax^2+2bx+c)}\:\mathrm{d}x=\frac{1} {2}\sqrt{\frac{\pi} {a} }e^{ \frac{b^2-ac}{a}} erf(\sqrt ax+\frac{b} {\sqrt a})+const. ~~~~~~~~ (a\neq0) $$'here erf(z) denotes the error function.
Naively I take the following as true
$$\int^\infty_{-\infty} e^{-(ax^2+2bx+c)}\:\mathrm{d}x=\sqrt{\frac{\pi} {a} }e^{ \frac{b^2-ac}{a}}~~~~~~~(1)$$I assume this is true for complex valued ##a,b~\text {and}~ c##
Please note Spiegel, Reference 2 pg.183 result 35.3 gives ##erf(\infty)=1## and Reference 1 pg. 297 says ##erf(-z)=-erf~~z##
Using equation(1) , I can reproduce equation 8.18 of Kaku, see Reference 3; equation 1.1 of Bailin and Love, see Reference 4 and equation 1.49 of Cheng and Li , see reference 5.
So , am I OK with using equation (1)? Is it valid?
References
1) Handbook of Mathematical Functions , Eds M.Abramowitz and I.A. Stegun , Dover Publications, Inc., New York , Ninth Printing , Nov. 1970.
2) M. R. Spiegel, Ph.D. , Mathematical Handbook , McGraw-Hill , Inc. , 1968.
3) M.Kaku , QuantumField Theory, A Modern Introduction , Oxford University Press, Inc. , 1993.
4) D. Bailin and A.Love , Introduction to Gauge Field Theory, IOP Publishing Ltd, 1986.
5) Ta-Pei Cheng and Ling-Fong Li , Gauge theory of elementary particle physics ,Oxford University Press , New York, 1988.
The result is ,result 7.4.32 of Abramowitz and Stegun, see pg.303 of Reference 1. I quote
'$$\int e^{-(ax^2+2bx+c)}\:\mathrm{d}x=\frac{1} {2}\sqrt{\frac{\pi} {a} }e^{ \frac{b^2-ac}{a}} erf(\sqrt ax+\frac{b} {\sqrt a})+const. ~~~~~~~~ (a\neq0) $$'here erf(z) denotes the error function.
Naively I take the following as true
$$\int^\infty_{-\infty} e^{-(ax^2+2bx+c)}\:\mathrm{d}x=\sqrt{\frac{\pi} {a} }e^{ \frac{b^2-ac}{a}}~~~~~~~(1)$$I assume this is true for complex valued ##a,b~\text {and}~ c##
Please note Spiegel, Reference 2 pg.183 result 35.3 gives ##erf(\infty)=1## and Reference 1 pg. 297 says ##erf(-z)=-erf~~z##
Using equation(1) , I can reproduce equation 8.18 of Kaku, see Reference 3; equation 1.1 of Bailin and Love, see Reference 4 and equation 1.49 of Cheng and Li , see reference 5.
So , am I OK with using equation (1)? Is it valid?
References
1) Handbook of Mathematical Functions , Eds M.Abramowitz and I.A. Stegun , Dover Publications, Inc., New York , Ninth Printing , Nov. 1970.
2) M. R. Spiegel, Ph.D. , Mathematical Handbook , McGraw-Hill , Inc. , 1968.
3) M.Kaku , QuantumField Theory, A Modern Introduction , Oxford University Press, Inc. , 1993.
4) D. Bailin and A.Love , Introduction to Gauge Field Theory, IOP Publishing Ltd, 1986.
5) Ta-Pei Cheng and Ling-Fong Li , Gauge theory of elementary particle physics ,Oxford University Press , New York, 1988.
Last edited: