- #1
whynot314
- 76
- 0
the problem stays to find the values of Lambda for which the given problem has nontrivial solutions.
Also to determine the corresponding nontrivial eigenfunctions.
y''-2y'+[itex]\lambda[/itex]y=0
0<x<[itex]\pi[/itex], y(0)=0, y([itex]\pi[/itex])=0
[itex]r^{2}[/itex]-2r=-[itex]\lambda[/itex]
r=1±i[itex]\sqrt{\lambda+1}[/itex]
y=[itex]e^{x}[/itex]([itex]c_{1}[/itex]cos([itex]\sqrt{\lambda+1}[/itex]x)+[itex]c_{2}[/itex]sin([itex]\sqrt{\lambda+1}[/itex]x)
for lambda i got [itex]\lambda_{n}[/itex]=[itex]n^{2}[/itex]-1
and for the function i got
[itex]y_{n}[/itex]=[itex]c_{n}[/itex][itex]e^{\pi}[/itex]sin(nx)
is this anywhere close to being right?
Also to determine the corresponding nontrivial eigenfunctions.
y''-2y'+[itex]\lambda[/itex]y=0
0<x<[itex]\pi[/itex], y(0)=0, y([itex]\pi[/itex])=0
[itex]r^{2}[/itex]-2r=-[itex]\lambda[/itex]
r=1±i[itex]\sqrt{\lambda+1}[/itex]
y=[itex]e^{x}[/itex]([itex]c_{1}[/itex]cos([itex]\sqrt{\lambda+1}[/itex]x)+[itex]c_{2}[/itex]sin([itex]\sqrt{\lambda+1}[/itex]x)
for lambda i got [itex]\lambda_{n}[/itex]=[itex]n^{2}[/itex]-1
and for the function i got
[itex]y_{n}[/itex]=[itex]c_{n}[/itex][itex]e^{\pi}[/itex]sin(nx)
is this anywhere close to being right?