- #1
Carla1985
- 94
- 0
Hi all, I have the system of nonlinear ODEs:
$$
\begin{align}
\frac{dX}{dt}=&-k_+ A X+k_-Y \\
\frac{dY}{dt}=&\ k_+ A X-k_-Y-\alpha k_+ X Y +\beta Z \\
\frac{dZ}{dt}=&\ \alpha k_+ X Y -\beta Z
\end{align}
$$
I also have a conservation law that says $D=X+Y+2Z$. Obviously it is not possible to find exact solutions to the system as it is nonlinear, but I noticed when running an ODE solver that the time course curve of $Z$ sometimes has a peak and then fall, dependant on the parameters. I was wondering if there is any way to be able to find a condition on whether I get a peak or not?
Regards
Carla
$$
\begin{align}
\frac{dX}{dt}=&-k_+ A X+k_-Y \\
\frac{dY}{dt}=&\ k_+ A X-k_-Y-\alpha k_+ X Y +\beta Z \\
\frac{dZ}{dt}=&\ \alpha k_+ X Y -\beta Z
\end{align}
$$
I also have a conservation law that says $D=X+Y+2Z$. Obviously it is not possible to find exact solutions to the system as it is nonlinear, but I noticed when running an ODE solver that the time course curve of $Z$ sometimes has a peak and then fall, dependant on the parameters. I was wondering if there is any way to be able to find a condition on whether I get a peak or not?
Regards
Carla