- #1
Luke Tan
- 29
- 2
- TL;DR Summary
- Finding the peak frequency in an analytical fourier transform
In a numerical Fourier transform, we find the frequency that maximizes the value of the Fourier transform.
However, let us consider an analytical Fourier transform, of ##\sin\Omega t##. It's Fourier transform is given by
$$-i\pi\delta(\Omega-\omega)+i\pi\delta(\omega+\Omega)$$
Normally, to find the value of ##\omega## that maximizes this function, we would differentiate with respect to ##\omega## and set to 0. However, in this case, the derivative of a dirac delta function cannot be evaluated. Hence, we are unable to find the peak frequency to be at ##\Omega## unlike what we would in a numerical, discrete-time Fourier transform.
Is there any way around this, to find the peak frequency of the Fourier transform of a function?
However, let us consider an analytical Fourier transform, of ##\sin\Omega t##. It's Fourier transform is given by
$$-i\pi\delta(\Omega-\omega)+i\pi\delta(\omega+\Omega)$$
Normally, to find the value of ##\omega## that maximizes this function, we would differentiate with respect to ##\omega## and set to 0. However, in this case, the derivative of a dirac delta function cannot be evaluated. Hence, we are unable to find the peak frequency to be at ##\Omega## unlike what we would in a numerical, discrete-time Fourier transform.
Is there any way around this, to find the peak frequency of the Fourier transform of a function?