- #1
daudaudaudau
- 302
- 0
Hi.
This is just a general question about a problem I think I'm having. If I have a function f(x1,x2,x3) and I want to find it's global minimum for x1>0,x2>0,x3>0 using unconstrained minimization, I've read that I can use a penalty function to make the function increase monotonically if any of the variables become less than 0. This way a minimum will never be found below 0.
BUT what if f(...) is decreasing at the time when (for instance) x1 goes below zero? Then I've created a valley in my function that is not supposed to be there, and the optimization routine thinks this is the minimum. At least I suspect.
Is this not a general problem with penalty functions?
Regards,
Anders
This is just a general question about a problem I think I'm having. If I have a function f(x1,x2,x3) and I want to find it's global minimum for x1>0,x2>0,x3>0 using unconstrained minimization, I've read that I can use a penalty function to make the function increase monotonically if any of the variables become less than 0. This way a minimum will never be found below 0.
BUT what if f(...) is decreasing at the time when (for instance) x1 goes below zero? Then I've created a valley in my function that is not supposed to be there, and the optimization routine thinks this is the minimum. At least I suspect.
Is this not a general problem with penalty functions?
Regards,
Anders