- #1
andrespinilla
- 1
- 0
When the pendulum in Problem 3.8 is vibrating freely in unforced oscillation, the amplitude of its swing decreases by a factor of e after 75 cycles of oscillation. (a) Determine the Q-value of the pendulum. (b) The point of suspension of the pendulum is moved according to ξ = a cos ωt at the resonance frequency ωo with a = 0.5 mm. What will be the amplitude of swing of the pendulum? (c) Show that the width of the amplitude resonance curve at half height is equal to γ √3 and determine its value if the length of the pendulum is 1.5 m. (Assume g = 9.81 m s−2.) (Hint: Follow the approach of Section 3.3 that was used to determine the frequencies at which the half heights of a power resonance curve occur.) please I need some help I don't know how to proced.