Perform suitable gauge transformations

In summary, "Perform suitable gauge transformations" refers to the process of modifying the parameters or fields in a physical system to simplify equations or change the perspective of the problem while preserving the system's essential characteristics. This method is commonly applied in physics, particularly in quantum mechanics and gauge theory, to achieve a more convenient or insightful formulation of the system's behavior.
  • #1
LeoJakob
24
2
Homework Statement
Let the electromagnetic potentials be given by
$$
\Phi(\vec{r}, t)=-(\vec{a} \cdot \vec{r}) t, \quad \vec{A}(\vec{r}, t)=-\frac{\vec{a} r^{2}}{4 c^{2}}, \quad \vec{a}=\text { const. }
$$
Perform suitable gauge transformations
$$
\begin{array}{l}
\vec{A}(\vec{r}, t) \longrightarrow \vec{A}^{\prime}(\vec{r}, t)=\vec{A}(\vec{r}, t)+\vec{\nabla} \chi(\vec{r}, t), \\
\Phi(\vec{r}, t) \longrightarrow \Phi^{\prime}(\vec{r}, t)=\Phi(\vec{r}, t)-\frac{\partial \chi(\vec{r}, t)}{\partial t}
\end{array}
$$
so that the potentials comply with the respective gauge condition:

$$(i) \Phi^{\prime}=0 $$

$$(ii) \text{Lorenz gauge: } \vec{\nabla} \cdot \vec{A}^{\prime}+\frac{1}{c^{2}} \frac{\partial \Phi^{\prime}}{\partial t}=0 $$

Hint: To solve the differential equations for the gauge function ## \chi(\vec{r}, t) ##, use that ## \square\left[(\vec{a} \cdot \vec{r})(c t)^{2}\right]=-2(\vec{a} \cdot \vec{r}) ##.


Verify your solution.
Relevant Equations
$$\vec{B}(\vec{r}, t) = \vec{\nabla} \times \vec{A}(\vec{r}, t), \quad \vec{E}(\vec{r}, t) = -\dot{\vec{A}}(\vec{r}, t) - \vec{\nabla} \Phi(\vec{r}, t), \\
\Delta \Phi + \frac{\partial}{\partial t}(\vec{\nabla} \cdot \vec{A}) = -\frac{\rho}{\varepsilon_{0}}, \quad \left(\Delta - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{A} - \vec{\nabla}\left(\vec{\nabla} \cdot \vec{A} + \frac{1}{c^{2}} \dot{\Phi}\right) = -\mu_{0} \vec{j}, \\
\square \equiv \Delta - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}
$$
Hello, here is my solution attempt:

(i)

$$ \begin{aligned} 0 & =\Phi^{\prime}=\Phi-\frac{\partial \chi}{\partial t} \Rightarrow \Phi=\frac{\partial \chi}{\partial t} \\ & \Rightarrow \int \Phi dt=\chi \\ & \Rightarrow \chi=\int \limits_{0}^{t}-(\vec{a} \cdot \vec{r}) t^{\prime} d t=-\frac{1}{2}(\vec{a} \cdot \vec{r}) t^{2}\end{aligned} $$

(ii)

$$ \begin{align*}
&\vec{\nabla} \cdot \vec{A}^{\prime}+\frac{1}{c^{2}} \frac{\partial \phi^{\prime}}{\partial t}=0 \\
&\Leftrightarrow \vec{\nabla} \cdot \vec{A}^{\prime}=-\frac{1}{c^{2}} \frac{\partial \Phi^{\prime}}{\partial t} \text{(I) }\\
&\vec{\nabla} \cdot \vec{A}^{\prime}=\vec{\nabla} \cdot(\vec{A}+\vec{\nabla} \chi)=\vec{\nabla} \cdot \vec{A}+\Delta \chi \text{(II) }\\
&\frac{\partial \Phi^{\prime}}{\partial t}=\dot{\Phi}-\ddot{\chi}=\frac{\partial}{\partial t}(\Phi-\dot{\chi}) \text{(III) }\\
&=-\vec{a} \cdot \vec{r}-\frac{\partial^2 \chi}{\partial t^2} \text{ with } \dot{\Phi}=\frac{\partial}{\partial t}(-\vec{a} \cdot \vec{r} t)=-\vec{a} \cdot \vec{r} \\
&\vec{\nabla} \cdot \vec{A}=-\frac{1}{4 c^{2}}\left(\begin{array}{c}
\partial_{x} \\
\partial_{y} \\
\partial_{z}
\end{array}\right) \cdot\left(\begin{array}{cc}
a_{1} r^{2} \\
a_{2} r^{2} \\
a_{3} r^{2}
\end{array}\right) \\
&=-\frac{1}{4 c^{2}} \cdot 2(a_{1} \chi+a_{2} y+a_{3} z) \\
&=-\frac{1}{2 c^{2}} \vec{a} \cdot \vec{r}=\frac{1}{2 c^{2}} \dot{\Phi} \\
&\text{(I) } \frac{1}{2 c^{2}}A\dot{\Phi}+\Delta \chi=-\frac{1}{c^{2}}(\dot{\Phi}-\ddot{\chi}) \\
&\stackrel{\cdot c^2}{\Leftrightarrow} \frac{3}{2} \dot{\Phi}+c^{2} \Delta \chi-\ddot{\chi}=0 \\
\end{align*} $$

Can somebody help me with the next step?
 
Physics news on Phys.org
  • #2
LeoJakob said:
$$ \frac{3}{2} \dot{\Phi}+c^{2} \Delta \chi-\ddot{\chi}=0 $$
This may be written $$ \Box \chi = -\frac{3}{2c^2} \dot{\Phi}$$
Use ##\dot{\Phi} = -\vec a \cdot \vec r## and the hint given in the problem statement.
 
  • #3
TSny said:
This may be written $$ \Box \chi = -\frac{3}{2c^2} \dot{\Phi}$$
Use ##\dot{\Phi} = -\vec a \cdot \vec r## and the hint given in the problem statement.
Thank you :)

$$ \begin{align}
\Delta \chi - \frac{1}{c^{2}} \ddot{\chi} &= -\frac{3}{2 c^{2}} \dot{\Phi} = -\frac{3}{2 c^{2}}(-\vec{a} \cdot \vec{r}) = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
\Leftrightarrow \quad \Box \chi &= -\frac{1}{c^{2}} \frac{3}{2} \dot{\Phi} = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
&= -\frac{1}{c^{2}} \frac{3}{2} \cdot \frac{1}{2} \Box \left[ (\vec{a} \cdot \vec{r})(c t)^{2} \right] \\
&= \Box \left[ -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2} \right] \\
\overset{\text{Is this implication correct?}}{\Rightarrow } \chi &= -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2}
\end{align}
$$

I have thus found a Lorenz gauge ##\chi## for the potentials ## \Phi## and ##\vec A##.
 
Last edited:
  • #4
LeoJakob said:
Thank you :)

$$ \begin{align}
\Delta \chi - \frac{1}{c^{2}} \ddot{\chi} &= -\frac{3}{2 c^{2}} \dot{\Phi} = -\frac{3}{2 c^{2}}(-\vec{a} \cdot \vec{r}) = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
\Leftrightarrow \quad \Box \chi &= -\frac{1}{c^{2}} \frac{3}{2} \dot{\Phi} = \frac{3}{2 c^{2}}(\vec{a} \cdot \vec{r}) \\
&= -\frac{1}{c^{2}} \frac{3}{2} \cdot \frac{1}{2} \Box \left[ (\vec{a} \cdot \vec{r})(c t)^{2} \right] \\
&= \Box \left[ -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2} \right] \\
\overset{\text{Is this implication correct?}}{\Rightarrow } \chi &= -\frac{3}{4}(\vec{a} \cdot \vec{r}) t^{2}
\end{align}
$$
Your work looks good. I agree with your result for ##\chi##. I think the problem statement wants you to write explicitly your results for ##\vec A'## and ##\chi'## for parts ##(i)## and ##(ii)##. The results are not unique since ##\chi## is not unique.
 
Last edited:
  • Like
Likes LeoJakob

FAQ: Perform suitable gauge transformations

What is a gauge transformation?

A gauge transformation is a change of variables in a field theory that leaves the physical content of the theory invariant. It typically involves modifying the fields in a way that compensates for changes in other fields or parameters, ensuring that observable quantities remain unchanged.

Why are gauge transformations important in physics?

Gauge transformations are crucial because they reflect the underlying symmetries of a physical system. These symmetries often correspond to fundamental conservation laws. For example, in electromagnetism, gauge invariance is related to the conservation of electric charge. Gauge theories also form the foundation of the Standard Model of particle physics.

How do you perform a gauge transformation in electromagnetism?

In electromagnetism, a gauge transformation involves changing the scalar and vector potentials, \( \phi \) and \( \mathbf{A} \), respectively. The transformation is given by \( \phi' = \phi - \frac{\partial \Lambda}{\partial t} \) and \( \mathbf{A}' = \mathbf{A} + \nabla \Lambda \), where \( \Lambda \) is a scalar function. This leaves the electric and magnetic fields \( \mathbf{E} \) and \( \mathbf{B} \) unchanged.

What is the significance of gauge invariance in quantum field theory?

Gauge invariance in quantum field theory ensures that the equations of motion and the interactions of particles are consistent with the symmetries of the theory. This invariance leads to the introduction of gauge bosons, which mediate the fundamental forces. For instance, photons are the gauge bosons of electromagnetism, while W and Z bosons are associated with the weak force.

Can gauge transformations affect physical observables?

No, gauge transformations do not affect physical observables. They are designed to change the mathematical description of a system without altering measurable quantities. This invariance is what makes gauge transformations a powerful tool in theoretical physics, as it allows for different but equivalent descriptions of the same physical reality.

Back
Top