- #1
forevergone
- 49
- 0
The question is:
A sequence of length 6 is formed from the digits {0,1,2...9}. If no repetition is allowed, how many of these sequences can be formed if:
f) the sum of the first two terms is 7?
So i set up my place holders:
_ _ _ _ _ _
if the first 2 place holders have a sum of 7, are there 8 possibilities for each place holder because 0+1, 1+6, 2+5, 3+4, 4+3, 5+2, 6+1, 7+0? Or would there be 4 for each consisting only of 0+1, 1+6, 2+5, 3+4? So really teh answer would be 16 x 8P4 or 64 x 8P4?
The answer was 13440, but I don't see why.
A sequence of length 6 is formed from the digits {0,1,2...9}. If no repetition is allowed, how many of these sequences can be formed if:
f) the sum of the first two terms is 7?
So i set up my place holders:
_ _ _ _ _ _
if the first 2 place holders have a sum of 7, are there 8 possibilities for each place holder because 0+1, 1+6, 2+5, 3+4, 4+3, 5+2, 6+1, 7+0? Or would there be 4 for each consisting only of 0+1, 1+6, 2+5, 3+4? So really teh answer would be 16 x 8P4 or 64 x 8P4?
The answer was 13440, but I don't see why.