- #1
kalish1
- 99
- 0
Hello,
I would like to check if the work I have done for this problem is valid and accurate. Any input would be appreciated. Thank you.
**Problem statement:** Let $G$ be a group of order 150. Let $H$ be a subgroup of $G$ of order 25. Consider the action of $G$ on $G/H$ by left multiplication: $g*aH=gaH.$ Use the permutation representation of the action to show that $G$ is not simple.
**My attempt:** Let $S_6$ be the group of permutations on $G/H$. Then, the action of $G$ on $G/H$ defines a homomorphism $f:G \rightarrow S_6$. We know $|S_6| = 720.$ Since $|G|=150$ does not divide 720, and $f(G)$ is a subgroup of $S_6$, $f$ cannot be one-to-one. Thus, $\exists$ $g_1,g_2$ distinct in $G$ such that $f(g_1)=f(g_2) \implies f(g_1g_2^{-1})=e$. Thus, $\ker(f) = \{g:f(g)=e\}$. Since $\ker(f)$ is a normal subgroup of $G$, we have found a normal subgroup of $G$. Also, since $f$ is non-trivial, then $\ker(f)$ is a proper normal subgroup of $G.$ Hence $G$ is not simple.
Any suggestions or corrections?
I would like to check if the work I have done for this problem is valid and accurate. Any input would be appreciated. Thank you.
**Problem statement:** Let $G$ be a group of order 150. Let $H$ be a subgroup of $G$ of order 25. Consider the action of $G$ on $G/H$ by left multiplication: $g*aH=gaH.$ Use the permutation representation of the action to show that $G$ is not simple.
**My attempt:** Let $S_6$ be the group of permutations on $G/H$. Then, the action of $G$ on $G/H$ defines a homomorphism $f:G \rightarrow S_6$. We know $|S_6| = 720.$ Since $|G|=150$ does not divide 720, and $f(G)$ is a subgroup of $S_6$, $f$ cannot be one-to-one. Thus, $\exists$ $g_1,g_2$ distinct in $G$ such that $f(g_1)=f(g_2) \implies f(g_1g_2^{-1})=e$. Thus, $\ker(f) = \{g:f(g)=e\}$. Since $\ker(f)$ is a normal subgroup of $G$, we have found a normal subgroup of $G$. Also, since $f$ is non-trivial, then $\ker(f)$ is a proper normal subgroup of $G.$ Hence $G$ is not simple.
Any suggestions or corrections?