- #1
karnten07
- 213
- 0
Permutations (last question of sheet, yay!)
1. Homework Statement [/b]
[tex]\eta[/tex]:=
(1 2 ... n-1 n)
(n n-1 ... 2 1)
[tex]\in[/tex]S[tex]_{n}[/tex] for any n[tex]\in[/tex]N
n.b That should be 2 lines all in one large bracket btw
a.) Determine its sign.
b.) Let n [tex]\geq[/tex]1. Let <a1,...,as> [tex]\in[/tex]Sn be a cycle and let [tex]\sigma[/tex][tex]\in[/tex]Sn be arbitrary. Show that
[tex]\sigma\circ[/tex] <a1,...,as> [tex]\circ[/tex][tex]\sigma^{-1}[/tex] = <[tex]\sigma[/tex](a1),...,[tex]\sigma[/tex](as)> in Sn.
I get the sign of the permutation to be (-1)^n/2
I don;t know how to do the second part, any ideas?
1. Homework Statement [/b]
[tex]\eta[/tex]:=
(1 2 ... n-1 n)
(n n-1 ... 2 1)
[tex]\in[/tex]S[tex]_{n}[/tex] for any n[tex]\in[/tex]N
n.b That should be 2 lines all in one large bracket btw
a.) Determine its sign.
b.) Let n [tex]\geq[/tex]1. Let <a1,...,as> [tex]\in[/tex]Sn be a cycle and let [tex]\sigma[/tex][tex]\in[/tex]Sn be arbitrary. Show that
[tex]\sigma\circ[/tex] <a1,...,as> [tex]\circ[/tex][tex]\sigma^{-1}[/tex] = <[tex]\sigma[/tex](a1),...,[tex]\sigma[/tex](as)> in Sn.
Homework Equations
The Attempt at a Solution
I get the sign of the permutation to be (-1)^n/2
I don;t know how to do the second part, any ideas?
Last edited: