- #1
MarkFL
Gold Member
MHB
- 13,288
- 12
As students taking pre-calculus, you are probably aware that when two lines are perpendicular, the product of their slopes is -1. Let's see why this is.
Let one line be $\displaystyle y_1=m_1x+b_1$ and the other line be $\displaystyle y_2=m_2x+b_2$.
Now,we know the angle of inclination of a line is found from:
$\displaystyle m=tan(\theta)\,\therefore\,\theta=\tan^{-1}(m)$
Let $\displaystyle \theta_1$ be the angle of inclination of $\displaystyle y_1$ and $\displaystyle \theta_2$ be the angle of inclination of $\displaystyle y_2$.
Now, suppose $\displaystyle 0\le\theta_2\le\frac{\pi}{2}$ and $\displaystyle -\frac{\pi}{2}\le\theta_1\le0$.
If the two lines are perpendicular, then we must have:
$\displaystyle \theta_2=\theta_1+\frac{\pi}{2}$
Now, taking the tangent of both sides, we find:
$\displaystyle \tan\left(\theta_2 \right)=\tan\left(\theta_1+\frac{\pi}{2} \right)$
Using the identity $\displaystyle \tan\left(x+\frac{\pi}{2} \right)=-\cot(x)$ we have:
$\displaystyle \tan\left(\theta_2 \right)=-\cot\left(\theta_1 \right)$
$\displaystyle \tan\left(\theta_2 \right)=-\frac{1}{\tan\left(\theta_1 \right)}$
And so, we must then have:
$\displaystyle m_2=-\frac{1}{m_1}$
$\displaystyle m_1m_2=-1$
Comments and questions should be posted here:
http://mathhelpboards.com/commentary-threads-53/commentary-perpendicular-lines-product-their-slopes-4218.html
Let one line be $\displaystyle y_1=m_1x+b_1$ and the other line be $\displaystyle y_2=m_2x+b_2$.
Now,we know the angle of inclination of a line is found from:
$\displaystyle m=tan(\theta)\,\therefore\,\theta=\tan^{-1}(m)$
Let $\displaystyle \theta_1$ be the angle of inclination of $\displaystyle y_1$ and $\displaystyle \theta_2$ be the angle of inclination of $\displaystyle y_2$.
Now, suppose $\displaystyle 0\le\theta_2\le\frac{\pi}{2}$ and $\displaystyle -\frac{\pi}{2}\le\theta_1\le0$.
If the two lines are perpendicular, then we must have:
$\displaystyle \theta_2=\theta_1+\frac{\pi}{2}$
Now, taking the tangent of both sides, we find:
$\displaystyle \tan\left(\theta_2 \right)=\tan\left(\theta_1+\frac{\pi}{2} \right)$
Using the identity $\displaystyle \tan\left(x+\frac{\pi}{2} \right)=-\cot(x)$ we have:
$\displaystyle \tan\left(\theta_2 \right)=-\cot\left(\theta_1 \right)$
$\displaystyle \tan\left(\theta_2 \right)=-\frac{1}{\tan\left(\theta_1 \right)}$
And so, we must then have:
$\displaystyle m_2=-\frac{1}{m_1}$
$\displaystyle m_1m_2=-1$
Comments and questions should be posted here:
http://mathhelpboards.com/commentary-threads-53/commentary-perpendicular-lines-product-their-slopes-4218.html
Last edited: