- #1
JaneHall89
- 19
- 0
Homework Statement
Assume that there is a deviation from Coulomb’s law at very small distances, the Coulomb potential energy between an electron and proton is given by
[itex]V_{mod}(r)=\begin{cases}
-\frac{q^{2}}{4\pi\varepsilon_{0}}\frac{b}{r^{2}} & 0<r\leq b\\
-\frac{q^{2}}{4\pi\varepsilon_{0}}\frac{1}{r} & r>b
\end{cases}[/itex]
(a) Find the first order correction for the ground state using the standard integrals
Homework Equations
Ground State - [itex]\psi_0=\frac{2}{a_0^{3/2}}e^{-r/a_0}[/itex]
To find the first order correction - [itex]E_{1}^{(1)}[/itex]=<ψ0| [itex]\delta\hat{\textrm{H}} [/itex]|ψ0>
Perturbation - [itex]\delta\hat{\textrm{H}}=-\dfrac{q^{2}}{4\pi\varepsilon_{0}}\left(\dfrac{b}{r^{2}}-\dfrac{1}{r}\right)[/itex] for 0<r≤b
Standard integrals
[itex]\int_{0}^{x}[/itex] e-u du = 1 - e-x
-[itex]\int_{0}^{x}[/itex] u e-u du = 1 - e-x - xe-x
The Attempt at a Solution
Using [itex]E_{1}^{(1)}[/itex]=[itex]\int_{-∞}^{∞}[/itex]ψ(0) * [itex]\delta\hat{\textrm{H}} [/itex] ψ(0)
[itex]E_{1}^{(1)}=\dfrac{1}{\pi a_{0}^{3}}\dfrac{q^{2}}{4\pi\varepsilon_{0}}\int_{0}^{b}(e^{\dfrac{-2r}{a_{0}}}) (\dfrac{b}{r^{2}}-\dfrac{1}{r})[/itex] dr
So I've taken the constants out and applied a 'sandwich integral' with the perturbation Hamiltonian... This problem is I have no idea where to start making this easier for me, I've been staring at it for aleast and hour. Can someone help please?
Last edited: