Perturbation of Maxwell stress from voltage distribution

In summary: Therefore, the e-coefficients can be written as:\begin{align*}e_{x1} &= -\epsilon \left( E_{x0} - E_{y0} \frac{\delta E_{y}}{\delta E_{x}} \right) = -\epsilon \left( \frac{V_{dc}(x,y)}{d} - \frac{V_{dc}(x,y)}{d} \right) = 0 \\e_{x2} &= \epsilon \left( E_{x0} - E_{y0} \frac{\delta E_{y}}{\delta E_{x}} \right) = \epsilon \left( \frac{V_{dc}(
  • #1
chowdhury
36
3
TL;DR Summary
I want to find the perturbation of Maxwell stress for ac perturbation of voltage on top of DC.
I have a voltage distribution ##V(x,y) = V_{dc}(x,y)+ V_{ac}(x,y) \cos(\omega t)##, I have derived the Matrix e. But I do not know how to extract it from the voltage, meaning I do not know how to find ##E_{x0} , E_{y0}, \delta E_{x}, \delta E_{y}## in terms of ##V_{dc}(x,y), V_{ac}(x,y)##.


\begin{equation*}
\mathbf{E} = -\nabla \negthinspace V = \begin{bmatrix}
E_{x}\\
E_{y} \end{bmatrix} = \begin{bmatrix}
E_{x0} + \delta E_{x}\\
E_{y0} + \delta E_{y}
\end{bmatrix}
\end{equation*}

\begin{equation*}
\mathbf{T}^{\mathrm{Maxwell}} = \epsilon \mathbf{E} \otimes \mathbf{E} - \frac{1}{2} \epsilon \mathbf{E}^2 \mathcal{I}
\end{equation*}

Here ##\mathbf{E}^2 = E_{x}^2 + E_{y}^2##.

\begin{align*}
\mathbf{T}^{\mathrm{Maxwell}} &= \epsilon \begin{bmatrix}
\frac{1}{2} \left( E_x^2 - E_y^2 \right) & E_{x} E_{y} \\
E_{x} E_{y} & -\frac{1}{2} \left( E_x^2 - E_y^2 \right)
\end{bmatrix} \\
&= \mathbf{T}^{\mathrm{Maxwell}}_{0} + \delta\mathbf{T}^{\mathrm{Maxwell}}
\end{align*}

\begin{align*}
\delta\mathbf{T}^{\mathrm{Maxwell}} &= \epsilon \begin{bmatrix}
E_{x0} \delta E_{x} - E_{y0} \delta E_{y} & E_{x0} \delta E_{y} + E_{y0} \delta E_{x}\\
E_{x0} \delta E_{y} + E_{y0} \delta E_{x} & -\left( E_{x0} \delta E_{x} - E_{y0} \delta E_{y} \right )
\end{bmatrix} \\
&= \begin{bmatrix}
\delta T_{1}^{\mathrm{Maxwell}} & \delta T_{6}^{\mathrm{Maxwell}}\\
\delta T_{6}^{\mathrm{Maxwell}} & \delta T_{2}^{\mathrm{Maxwell}}
\end{bmatrix}
\end{align*}

The e-coefficient is
\begin{align*}
e_{iI} = \begin{bmatrix}
e_{x1} & e_{x2} & e_{x6} \\
e_{y1} & e_{y2} & e_{y6}
\end{bmatrix}
\end{align*}

In component form ##e_{iI} = e_{Ii}##, we can write

\begin{align*}
e_{x1} &= -\delta T_{1}^{\mathrm{Maxwell}} / \delta E_{x}, \qquad e_{y1} = - \delta T_{1}^{\mathrm{Maxwell}} / \delta E_{y} \\
e_{x2} &= -\delta T_{2}^{\mathrm{Maxwell}} / \delta E_{x}, \qquad e_{y2} = - \delta T_{2}^{\mathrm{Maxwell}} / \delta E_{y} \\
e_{x6} &= -\delta T_{6}^{\mathrm{Maxwell}} / \delta E_{x}, \qquad e_{y6} = - \delta T_{6}^{\mathrm{Maxwell}} / \delta E_{y} \\
\end{align*}

\begin{align*}
e_{x1} &= -\epsilon \left( E_{x0} - E_{y0} \frac{\delta E_{y}}{\delta E_{x}} \right) \\
e_{x2} &= \epsilon \left( E_{x0} - E_{y0} \frac{\delta E_{y}}{\delta E_{x}} \right) \\
e_{x6} &= -\epsilon \left( E_{x0} \frac{\delta E_{y}}{\delta E_{x}} + E_{y0} \right) \\
e_{y1} &= -\epsilon \left( E_{x0} \frac{\delta E_{x}}{\delta E_{y}} - E_{y0} \right) \\
e_{y2} &= \epsilon \left( E_{x0} \frac{\delta E_{x}}{\delta E_{y}} - E_{y0} \right) \\
e_{y6} &= -\epsilon \left( E_{x0} + E_{y0} \frac{\delta E_{x}}{\delta E_{y}} \right)
\end{align*}

Now I have the problem, given ##V(x,y) = V_{dc}(x,y)+ V_{ac}(x,y) \cos(\omega t)##, how to find,
  • ##E_{x0}##
  • ##E_{y0}##
  • ##\delta E_{x}##
  • ##\delta E_{y}##
in terms of ##V_{dc}(x,y), V_{ac}(x,y)##For just 1D, we have
##E_{x} = E_{0} + \delta E = \frac{V_{dc} + V_{ac}}{d}##, then $$\mathbf{T}^{\mathrm{Maxwell}} = {T}_{0} + \delta T$$ and we obtain ##e = -\epsilon E_{dc}##, which I can clearly find out, but in 2D, how to find the above four things?
 
Last edited:
Physics news on Phys.org
  • #2
To find ##E_{x0}, E_{y0}, \delta E_{x}##, and ##\delta E_{y}## in terms of ##V_{dc}(x,y), V_{ac}(x,y)##, you need to solve the following two equations:\begin{align*}E_{x} &= \frac{V_{dc}(x,y) + V_{ac}(x,y) \cos(\omega t)}{d} \\E_{y} &= \frac{V_{dc}(x,y) + V_{ac}(x,y) \sin(\omega t)}{d}\end{align*}The solution will be:\begin{align*}E_{x0} &= \frac{V_{dc}(x,y)}{d} \\E_{y0} &= \frac{V_{dc}(x,y)}{d} \\\delta E_{x} &= \frac{V_{ac}(x,y) \cos(\omega t)}{d} \\\delta E_{y} &= \frac{V_{ac}(x,y) \sin(\omega t)}{d}\end{align*}
 

FAQ: Perturbation of Maxwell stress from voltage distribution

What is the Maxwell stress tensor?

The Maxwell stress tensor is a mathematical representation of the electromagnetic forces acting on a charged particle in an electric or magnetic field. It describes the stress, or pressure, exerted on a surface by the electric and magnetic fields.

How does voltage distribution affect the Maxwell stress tensor?

Voltage distribution can affect the Maxwell stress tensor by altering the electric field strength and direction, which in turn changes the stress exerted on a surface. Changes in voltage distribution can also affect the magnetic field, leading to further changes in the Maxwell stress tensor.

What is perturbation in relation to the Maxwell stress tensor?

Perturbation refers to small changes or disturbances in the electric or magnetic fields that can affect the Maxwell stress tensor. These changes can be caused by variations in voltage distribution, material properties, or external influences.

How can we measure the perturbation of the Maxwell stress tensor?

The perturbation of the Maxwell stress tensor can be measured using various experimental techniques, such as interferometry, optical trapping, or force spectroscopy. These methods allow for the precise measurement of changes in the stress tensor caused by perturbations.

What are the practical applications of studying perturbation of the Maxwell stress tensor?

Studying perturbation of the Maxwell stress tensor can have various practical applications, such as in the design and optimization of microelectromechanical systems (MEMS), understanding the behavior of biological cells under electric and magnetic fields, and developing new materials with desired electromagnetic properties.

Similar threads

Replies
1
Views
2K
Replies
2
Views
2K
Replies
36
Views
5K
Replies
1
Views
768
Replies
4
Views
2K
Replies
6
Views
1K
Replies
1
Views
909
Replies
7
Views
2K
Back
Top