A Perturbative Renormalization in Phi 4 Theory

Diracobama2181
Messages
70
Reaction score
3
TL;DR Summary
I seem to have a misunderstanding as to how counterterms actually get rid of the divergences in amplitudes.
For example, after the Lagrangian is renormalized at 1-loop order, it is of the form
$$\mathcal{L}=\frac{1}{2}\partial^{\mu}\Phi\partial_{\mu}\Phi-\frac{1}{2}m^2\Phi^2-\frac{\lambda\Phi^4}{4!}-\frac{1}{2}\delta_m^2\Phi^2-\frac{\delta_{\lambda}\Phi^4}{4!}$$.

So if I were to attempt to find the amplitude of $$\bra{p'}(\Phi(x_1)\Phi(x_2))\ket{p}$$ to order $\lambda$, I would get

$$\bra{p'}\Phi(x_1)\Phi(x_2)\ket{p}=\bra{\Omega}a_{p'}\Phi(x)\Phi(x) a_{p}^{\dagger}e^{i\int d^4y (\lambda+\delta_{\lambda})}\ket{\Omega}\\=(e^{i(p'\cdot x_1-p\cdot x_2)}+e^{i(p'\cdot x_2-p\cdot x_1)}-i(\lambda+\delta_{\lambda})\int e^{i(p'-p)\cdot x}\int\frac{d^4k}{(2\pi)^4}\frac{ie^{-ik\cdot (x_1-x)}}{k^2-m^2+i\epsilon}\int\frac{d^4q}{(2\pi)^4}\frac{ie^{-iq \cdot (x_2-x)}}{q^2-m^2+i\epsilon}d^4x)$$
From here, I would dimensionally regularize
and use $$\delta_{\lambda}=\frac{3\lambda^2}{32\pi^2}(\frac{2}{\epsilon}-\gamma+\log{4\pi})$$, which is at order $\lamba^2$, so it dosent cancel out the divergence of this integral. What is it about renormalization that I'm misunderstanding?
 
Physics news on Phys.org
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top