- #1
CFXMSC
- 33
- 0
Homework Statement
An electron of wavelength [itex]1.74 \times 10^{-10}[/itex] m strikes an atom of ionized helium (He+). What is the wavelength (m) of the light corresponding to the line in the emission spectrum with the smallest energy transition?
Homework Equations
Kinetic Energy
[itex]E_k=\frac{1}{2} \times m_e \times v_e^2[/itex]
Photon Energy
[itex]E_p=\frac{h \times c}{\lambda_p}[/itex]
Transition Energy
[itex]E_b=-k \times z^2 \times \left(\frac{1}{n_f^2}-\frac{1}{n_i^2}\right)[/itex]
De Broglie wavelenght
[itex]v_e=\frac{h}{m_e \times \lambda_e}[/itex]
Constants:
[itex]h=6.6260755 \times 10^{-34} J s [/itex]
[itex]c=299792458 \ m/s[/itex]
[itex]m_e=9.1093897 \times 10^{-31} \ kg[/itex]
[itex]k=2.1789601284 \times 10^{-18}[/itex]
[itex]Z_{He^+}=2[/itex]
Problem constant:
[itex]\lambda_e=1.74 \times 10^{-10}[/itex]
[itex]n_i=?[/itex]
[itex]n_f=?[/itex]
The Attempt at a Solution
When the question say "smallest energy transition" what value of [itex]n_i=?[/itex] and [itex]n_f=?[/itex] should i use?
jumping this part and using energy balance i got that the kinetic energy of the electron must be equal to the transition energy plus photon energy:
[itex]\frac{1}{2} \times m_e \times v_e^2=-k \times z^2 \times \left(\frac{1}{n_f^2}-\frac{1}{n_i^2}\right)+\frac{h \times c}{\lambda_p}[/itex]
[itex]\frac{1}{2} \times m_e \times \left(\frac{h}{m_e \times \lambda_e}\right)^2=-k \times z^2 \times \left(\frac{1}{n_f^2}-\frac{1}{n_i^2}\right)+\frac{h \times c}{\lambda_p}[/itex]
Solving for [itex]\lambda_p[/itex]
[itex]\lambda_p=\left[\frac{1}{2} \times m_e \times \left(\frac{h}{m_e \times \lambda_e}\right)^2 + k \times z^2 \times \left(\frac{1}{n_f^2}-\frac{1}{n_i^2}\right)\right]^{-1}\times h \times c[/itex]
I've tryed for [itex]n_i[/itex] and [itex]n_f[/itex] 2 and 1, 3 and 2, 4 and 3 but without the right answer. What's wrong?