- #1
Fermat1
- 187
- 0
1)A meter long metal rod of mass m is falling with a constant velocity of 10 m/s. The rod is attached to two conducting rails. Determine the emf if there is a uniform magnetic field directed perpendicular to the motion of the bar. The resistance has a value of 105 ohms.
I don't know how I can do it when the magnetic field is not given
2)A loop of wire is put in a changing magnetic field. The magnetic flux through the loop is given by $4t(t+2)$. The loop is connected to a parallel plate capacitor that has a plate separation of 15mm. Determine the electic field between the plates at time $t=3$ s.
Can I assume that potential difference equal emf if the wire has no resistance?
3)Let $V=(xyt^3T)i+(x^4tT)j$. Find the curl of the magnetic field and the electric field. I've found the curl.
The curl I found to be $-(4x^3t)j+(yt^3)k$ It's sensible to leave out the units T right?
How do I find the electric field?
I don't know how I can do it when the magnetic field is not given
2)A loop of wire is put in a changing magnetic field. The magnetic flux through the loop is given by $4t(t+2)$. The loop is connected to a parallel plate capacitor that has a plate separation of 15mm. Determine the electic field between the plates at time $t=3$ s.
Can I assume that potential difference equal emf if the wire has no resistance?
3)Let $V=(xyt^3T)i+(x^4tT)j$. Find the curl of the magnetic field and the electric field. I've found the curl.
The curl I found to be $-(4x^3t)j+(yt^3)k$ It's sensible to leave out the units T right?
How do I find the electric field?