- #1
comfortablynumb
- 3
- 0
I do not know to start. Here is the problem.Determine if the given function is piecewise continuous, piecewise smooth, or neither. Here $x\neq0$ is in the interval $[-1,1]$ and $f(0)=0$ in all cases.
1. $f(x)=sin(\frac{1}{x})$
2. $f(x)=xsin(\frac{1}{x})$
3. $f(x)={x}^{2}sin(\frac{1}{x})$
4. $f(x)={x}^{3}sin(\frac{1}{x})$ .
1. $f(x)=sin(\frac{1}{x})$
2. $f(x)=xsin(\frac{1}{x})$
3. $f(x)={x}^{2}sin(\frac{1}{x})$
4. $f(x)={x}^{3}sin(\frac{1}{x})$ .