- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey! :giggle:
We have the function $$f(x,y)=\begin{cases}x^2\sin\left (\frac{1}{x}\right )+y^2\sin\left (\frac{1}{y}\right ) & \text{ if } xy\neq 0 \\ x^2\sin\left (\frac{1}{x}\right ) & \text{ if } x\neq 0, y=0 \\ y^2\sin\left (\frac{1}{y}\right ) & \text{ if } x= 0, y\neq 0 \\ 0 & \text{ if } (x,y)=(0,0)\end{cases}$$
I want to calculate the partial derivatives $\frac{\partial{f}}{\partial{x}}$ and$\frac{\partial{f}}{\partial{y}}$ for each point $(x,y)\in \mathbb{R}^2$.
For that do we have the following?
$$\frac{\partial{f}}{\partial{x}}=\begin{cases}2x\sin\left (\frac{1}{x}\right )-\cos\left (\frac{1}{x}\right ) & \text{ if } xy\neq 0 \\ 2x\sin\left (\frac{1}{x}\right )-\cos\left (\frac{1}{x}\right ) & \text{ if } x\neq 0, y=0 \\ 0 & \text{ if } x= 0, y\neq 0 \\ 0 & \text{ if } (x,y)=(0,0)\end{cases}=\begin{cases}2x\sin\left (\frac{1}{x}\right )-\cos\left (\frac{1}{x}\right ) & \text{ if } x\neq 0 \\ 0 & \text{ if } x= 0 \end{cases}$$
$$\frac{\partial{f}}{\partial{y}}=\begin{cases}2y\sin\left (\frac{1}{y}\right )-\cos\left (\frac{1}{y}\right ) & \text{ if } xy\neq 0 \\ 0 & \text{ if } x\neq 0, y=0 \\ 2y\sin\left (\frac{1}{y}\right )-\cos\left (\frac{1}{y}\right ) & \text{ if } x= 0, y\neq 0 \\ 0 & \text{ if } (x,y)=(0,0)\end{cases}=\begin{cases}2y\sin\left (\frac{1}{y}\right )-\cos\left (\frac{1}{y}\right ) & \text{ if } y\neq 0 \\ 0 & \text{ if } y= 0 \end{cases}$$
Is everything correct? Or can we not just differentiate each part of the piecewise function?
To show that $f$ is in $(0,0)$ differentiable but not continuously differentiable do we do the following?
Since we have found the partial derivatives at $(0,0)$ it follows that $f$ is differentiable in $(0,0)$.
Then we have to show that $f_x$ and $f_y$ are not continuous in $(0,0)$ which would mean that $f$ is not continuously differentiable in $(0,0)$.
Is that correct?
:unsure:
We have the function $$f(x,y)=\begin{cases}x^2\sin\left (\frac{1}{x}\right )+y^2\sin\left (\frac{1}{y}\right ) & \text{ if } xy\neq 0 \\ x^2\sin\left (\frac{1}{x}\right ) & \text{ if } x\neq 0, y=0 \\ y^2\sin\left (\frac{1}{y}\right ) & \text{ if } x= 0, y\neq 0 \\ 0 & \text{ if } (x,y)=(0,0)\end{cases}$$
I want to calculate the partial derivatives $\frac{\partial{f}}{\partial{x}}$ and$\frac{\partial{f}}{\partial{y}}$ for each point $(x,y)\in \mathbb{R}^2$.
For that do we have the following?
$$\frac{\partial{f}}{\partial{x}}=\begin{cases}2x\sin\left (\frac{1}{x}\right )-\cos\left (\frac{1}{x}\right ) & \text{ if } xy\neq 0 \\ 2x\sin\left (\frac{1}{x}\right )-\cos\left (\frac{1}{x}\right ) & \text{ if } x\neq 0, y=0 \\ 0 & \text{ if } x= 0, y\neq 0 \\ 0 & \text{ if } (x,y)=(0,0)\end{cases}=\begin{cases}2x\sin\left (\frac{1}{x}\right )-\cos\left (\frac{1}{x}\right ) & \text{ if } x\neq 0 \\ 0 & \text{ if } x= 0 \end{cases}$$
$$\frac{\partial{f}}{\partial{y}}=\begin{cases}2y\sin\left (\frac{1}{y}\right )-\cos\left (\frac{1}{y}\right ) & \text{ if } xy\neq 0 \\ 0 & \text{ if } x\neq 0, y=0 \\ 2y\sin\left (\frac{1}{y}\right )-\cos\left (\frac{1}{y}\right ) & \text{ if } x= 0, y\neq 0 \\ 0 & \text{ if } (x,y)=(0,0)\end{cases}=\begin{cases}2y\sin\left (\frac{1}{y}\right )-\cos\left (\frac{1}{y}\right ) & \text{ if } y\neq 0 \\ 0 & \text{ if } y= 0 \end{cases}$$
Is everything correct? Or can we not just differentiate each part of the piecewise function?
To show that $f$ is in $(0,0)$ differentiable but not continuously differentiable do we do the following?
Since we have found the partial derivatives at $(0,0)$ it follows that $f$ is differentiable in $(0,0)$.
Then we have to show that $f_x$ and $f_y$ are not continuous in $(0,0)$ which would mean that $f$ is not continuously differentiable in $(0,0)$.
Is that correct?
:unsure: