- #1
LDP
Gold Member
- 3
- 0
Let Fn be the nth number of a Fibonacci sequence.
We know that Fnmod(p) forms a periodic sequence (http://en.wikipedia.org/wiki/Pisano_period) called the Pisano Period.
Let p = a prime such that p[itex]\equiv[/itex]{2,3}mod 5 so that h(p)[itex]\mid[/itex] 2 p + 2.
Let h(p) denote of the length of the Pisano period.
If D = {d1,d2,d3[itex]\cdots[/itex]dk} is the non-empty set of k divisors of 2 p + 2
Then:
h(p) = min[di] such that Fd(i + 1)[itex]\equiv[/itex] 1 mod p
and
Now let p = a prime such that p[itex]\equiv[/itex]{1,4}mod 5 so that h(p)[itex]\mid[/itex] p - 1.
If p has a primitive root such that g2[itex]\equiv[/itex] g + 1 mod(p) then h(p) = p - 1.
Note that g2[itex]\equiv[/itex] g + 1 mod(p) has two roots: 1.618033988 and -0.618033988 - variants of the Golden Ratio.
If p has no primitive root then D = {d1,d2,d3[itex]\cdots[/itex]dk} is the non-empty set of k divisors of p - 1.
Let h(p) = min[di] such that Fd(i + 1)[itex]\equiv[/itex] 1 mod p
and
di ~[itex]\mid[/itex] p + 1 and di ~[itex]\mid[/itex] floor [ p/2]].
If m is any positive integer > 3 we can write Fn mod Fm where h(Fm) is given by
We know that Fnmod(p) forms a periodic sequence (http://en.wikipedia.org/wiki/Pisano_period) called the Pisano Period.
Let p = a prime such that p[itex]\equiv[/itex]{2,3}mod 5 so that h(p)[itex]\mid[/itex] 2 p + 2.
Let h(p) denote of the length of the Pisano period.
If D = {d1,d2,d3[itex]\cdots[/itex]dk} is the non-empty set of k divisors of 2 p + 2
Then:
h(p) = min[di] such that Fd(i + 1)[itex]\equiv[/itex] 1 mod p
and
- di ~[itex]\mid[/itex][itex]\frac{1}{2}[/itex] p (p + 1)
- di ~[itex]\mid[/itex] p + 1
- di ~[itex]\mid[/itex] 3 (p - 1)
Now let p = a prime such that p[itex]\equiv[/itex]{1,4}mod 5 so that h(p)[itex]\mid[/itex] p - 1.
If p has a primitive root such that g2[itex]\equiv[/itex] g + 1 mod(p) then h(p) = p - 1.
Note that g2[itex]\equiv[/itex] g + 1 mod(p) has two roots: 1.618033988 and -0.618033988 - variants of the Golden Ratio.
If p has no primitive root then D = {d1,d2,d3[itex]\cdots[/itex]dk} is the non-empty set of k divisors of p - 1.
Let h(p) = min[di] such that Fd(i + 1)[itex]\equiv[/itex] 1 mod p
and
di ~[itex]\mid[/itex] p + 1 and di ~[itex]\mid[/itex] floor [ p/2]].
If m is any positive integer > 3 we can write Fn mod Fm where h(Fm) is given by
- h(Fm) = 2m ↔ m is even
- h(Fm) = 4m ↔ m is odd
Last edited: