- #1
nashed
- 58
- 5
O.K. here's the deal, a friend and I are taking a physics teaching methods course as an elective, as a part of the requirement we were asked to plan and execute (teach) a one hour lab on kinematics ( specifically ballistic movement), the Tracker program and error estimation.
We decided on taking a differing route to the standard and to use this lab to teach about experiment integrity, that is we want to teach about possible factors for errors/inaccuracy in experiments such as analyzing a video but having the reference object and the tracked object in different planes (different distances from the camera), or using an object which is severely affected by air friction to measure the acceleration due to gravity without taking the air friction into account, basically we want to teach about robust experimental setups and how to check for factors to hinder this robustness.
After preparing the lesson plan and preparing some experimental setups in which we included some of the above mentioned factors as examples we found out that our criteria for a bad experiment is deviation from the accepted value ( i.e. g =14 while the accepted value is g = 9.8 give or take), now this is a bad criterion because in this lesson we don't really care about the numerical result, we care about the experiment's robustness and if we can't find a better criterion our lesson will fall apart, so her I am asking for help after a long time of inactivity, can someone point me in the right direction?
We decided on taking a differing route to the standard and to use this lab to teach about experiment integrity, that is we want to teach about possible factors for errors/inaccuracy in experiments such as analyzing a video but having the reference object and the tracked object in different planes (different distances from the camera), or using an object which is severely affected by air friction to measure the acceleration due to gravity without taking the air friction into account, basically we want to teach about robust experimental setups and how to check for factors to hinder this robustness.
After preparing the lesson plan and preparing some experimental setups in which we included some of the above mentioned factors as examples we found out that our criteria for a bad experiment is deviation from the accepted value ( i.e. g =14 while the accepted value is g = 9.8 give or take), now this is a bad criterion because in this lesson we don't really care about the numerical result, we care about the experiment's robustness and if we can't find a better criterion our lesson will fall apart, so her I am asking for help after a long time of inactivity, can someone point me in the right direction?
Last edited by a moderator: