- #1
ognik
- 643
- 2
Hi - I get a different answer from the book, but please also review for correct mathematical language & notation ...
find residues for $ f(z) = \frac{sin(\frac{1}{z}) }{z^2 + a^2} $ There are 2 simple poles, $ \pm ia $ ; also I note that $ {z}_{o}^2 = -a^2 $ which proves useful for simplifying.
$ Res[f, ia] = \lim_{{z}\to{{z}_{0}}}\frac{(z - {z}_{0})sin(\frac{1}{z})}{z^2 - {z}_{0}^2} =
\lim_{{z}\to{{z}_{0}}} \frac{sin(\frac{1}{z})}{z + {z}_{0}} = \frac{sin(\frac{1}{ia})}{2ia} $
Now $ sin(i\theta) = i sinh(\theta) $, so $ Res[f, ia] = \frac{sinh(\frac{1}{a})}{2a} = Res[f, -ia] $
But the book says it should be $ - \frac{sinh(\frac{1}{a})}{2a} $ ?
find residues for $ f(z) = \frac{sin(\frac{1}{z}) }{z^2 + a^2} $ There are 2 simple poles, $ \pm ia $ ; also I note that $ {z}_{o}^2 = -a^2 $ which proves useful for simplifying.
$ Res[f, ia] = \lim_{{z}\to{{z}_{0}}}\frac{(z - {z}_{0})sin(\frac{1}{z})}{z^2 - {z}_{0}^2} =
\lim_{{z}\to{{z}_{0}}} \frac{sin(\frac{1}{z})}{z + {z}_{0}} = \frac{sin(\frac{1}{ia})}{2ia} $
Now $ sin(i\theta) = i sinh(\theta) $, so $ Res[f, ia] = \frac{sinh(\frac{1}{a})}{2a} = Res[f, -ia] $
But the book says it should be $ - \frac{sinh(\frac{1}{a})}{2a} $ ?