Please check my solutions -- Mass being pulled with an angled rope

AI Thread Summary
The discussion focuses on calculating the work done by a force F on a block of mass M, considering friction and normal forces. The force F of 100 N is applied at a 60-degree angle, and the friction force is determined using the formula f = μN, not f = μmg. The normal force N must be calculated correctly, as the applied force's angle affects its vertical component. The correct equation for the normal force includes the downward component of the applied force, leading to N - 100sin(60) = 4 * 9.81. Accurate calculations of these forces are essential for determining the work done.
ZurraMath
Messages
1
Reaction score
0
A block of mass M = 4 kg is pulled by a force F = 100 N forming an angle of 60 degrees with themhorizontal plane with friction coefficient 0.3.

Determine the work of force F, friction force and normal force.

02.png


04.png
 
Physics news on Phys.org
Welcome to PF. :smile:

On your first solution, what are units of "S" for work? What units should Work be in?
 
I assume S to be the displacement?
 
rsk said:
I assume S to be the displacement?
Oh, thanks. I guess the displacement is indeed a variable -- I missed that.
 
The friction force is $$f=\mu N$$ and NOT $$f=\mu mg$$. So to correctly determine the friction force you need to find the normal force N first.
Your equation for the normal force N doesn't seem correct either (though the final result might be correct), it should be $$N-100\sin60=4\cdot 9.81$$ i.e. the force of 100N is actually forming an angle of -60 degrees with the horizontal, that is it is pointing down not up.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top