- #1
ognik
- 643
- 2
Show $ \int_{-\infty}^{\infty}\frac{1}{x^4 - 2 cos 2 \theta + 1} \,dx = \frac{\pi}{2sin \theta} $
I know I want to use the residue theorem for $ \int_{0}^{\pi}\frac{1}{z^4 - 2 cos 2 \theta z^2 + 1} \,dz $, and have found the 4 poles ($ \pm e^{\pm i \theta } $).
I chose the upper semi-circle (closed path), |z|=R, which leaves only 2 poles interior, $ \pm e^{i \theta} $
I can show that the 'return path' integral around the semi-circle tends to 0 as R tends to $\infty$, so I can use the residue theorem for the path along the real axis. All good to here I think?
Using $ Res[f, {z}_{0}] = \lim_{{z}\to{{z}_{0}}} \frac{(z-{z}_{0})}{ (z+e^{i \theta})(z-e^{i \theta})(z+e^{-i \theta})(z-e^{-i \theta}) } $ I get
$ Res[f, e^{i \theta}] = \frac{1}{4i e^{i \theta}} \frac{1}{sin(2\theta)}$ and $ Res[f, -e^{i \theta}] = \frac{-1}{4i e^{i \theta}} \frac{1}{sin(2\theta)}$, but those residues cancel, so something is wrong (I was kinda hoping they would add). I've checked and re-checked, getting nowhere...
Could someone please just:
1) Confirm if my approach is OK
2) Check my 2 residues
That should be enough for me to finish this tomorrow (Sleepy) ...
I know I want to use the residue theorem for $ \int_{0}^{\pi}\frac{1}{z^4 - 2 cos 2 \theta z^2 + 1} \,dz $, and have found the 4 poles ($ \pm e^{\pm i \theta } $).
I chose the upper semi-circle (closed path), |z|=R, which leaves only 2 poles interior, $ \pm e^{i \theta} $
I can show that the 'return path' integral around the semi-circle tends to 0 as R tends to $\infty$, so I can use the residue theorem for the path along the real axis. All good to here I think?
Using $ Res[f, {z}_{0}] = \lim_{{z}\to{{z}_{0}}} \frac{(z-{z}_{0})}{ (z+e^{i \theta})(z-e^{i \theta})(z+e^{-i \theta})(z-e^{-i \theta}) } $ I get
$ Res[f, e^{i \theta}] = \frac{1}{4i e^{i \theta}} \frac{1}{sin(2\theta)}$ and $ Res[f, -e^{i \theta}] = \frac{-1}{4i e^{i \theta}} \frac{1}{sin(2\theta)}$, but those residues cancel, so something is wrong (I was kinda hoping they would add). I've checked and re-checked, getting nowhere...
Could someone please just:
1) Confirm if my approach is OK
2) Check my 2 residues
That should be enough for me to finish this tomorrow (Sleepy) ...