- #1
ognik
- 643
- 2
An old exam has: Evaluate $ \oint\frac{dz}{z(2z+1)} $, where the contour is a unit circle
This look good for the residue theorem, it has 2 simple poles at 0, $-\frac{1}{2}$
$ Res(f, 0)= \lim_{{z}\to{0}}z\frac{1}{z(2z+1)}=1$
$ Res(f, -\frac{1}{2})= \lim_{{z}\to{-\frac{1}{2}}}(z+\frac{1}{2})\frac{1}{z2(z+\frac{1}{2})}=-1$
$ \oint\frac{dz}{z(2z+1)} =2\pi i\sum Res(f) = 2 \pi [1 + (-1)] = 0$
Is that right?
This look good for the residue theorem, it has 2 simple poles at 0, $-\frac{1}{2}$
$ Res(f, 0)= \lim_{{z}\to{0}}z\frac{1}{z(2z+1)}=1$
$ Res(f, -\frac{1}{2})= \lim_{{z}\to{-\frac{1}{2}}}(z+\frac{1}{2})\frac{1}{z2(z+\frac{1}{2})}=-1$
$ \oint\frac{dz}{z(2z+1)} =2\pi i\sum Res(f) = 2 \pi [1 + (-1)] = 0$
Is that right?