- #1
ognik
- 643
- 2
$ \sum_{n} \ln\left({1+\frac{1}{n}}\right) $
$ \ln\left({1+\frac{1}{n}}\right) = \ln\left({1}\right) + \ln\left({\frac{1}{n}}\right) = 0 +\ln\left({{n}^{-1}}\right) = -\ln\left({n}\right)$
Now $\lim_{{n}\to{\infty}} -\ln\left({n}\right) \ne 0$, therefore the series diverges.
(Also can you suggest an alternate approach?)
$ \ln\left({1+\frac{1}{n}}\right) = \ln\left({1}\right) + \ln\left({\frac{1}{n}}\right) = 0 +\ln\left({{n}^{-1}}\right) = -\ln\left({n}\right)$
Now $\lim_{{n}\to{\infty}} -\ln\left({n}\right) \ne 0$, therefore the series diverges.
(Also can you suggest an alternate approach?)