- #1
ognik
- 643
- 2
Given $y'' + 3y'-4y= sin \omega t $, I used an ansatz of $y_p = A sin \omega t + B cos \omega t$
$\therefore y' = A \omega cos \omega t -B \omega sin \omega t, y'' = -A \omega^2 sin \omega t - B \omega^2 cos \omega t $
Substituting and equating coefficients, I get $ -A \omega^2 - 3B \omega - 4A = 1 (a), -B \omega^2 +3A \omega -4B = 0 (b)$
From (b) $A = \frac{B \omega^2 + 4B}{3\omega} $, substituting this into (a) gives $B = \frac{3}{35 \omega - \omega^3} $
I'd appreciate if someone could check this please?
$\therefore y' = A \omega cos \omega t -B \omega sin \omega t, y'' = -A \omega^2 sin \omega t - B \omega^2 cos \omega t $
Substituting and equating coefficients, I get $ -A \omega^2 - 3B \omega - 4A = 1 (a), -B \omega^2 +3A \omega -4B = 0 (b)$
From (b) $A = \frac{B \omega^2 + 4B}{3\omega} $, substituting this into (a) gives $B = \frac{3}{35 \omega - \omega^3} $
I'd appreciate if someone could check this please?