- #1
bwpbruce
- 60
- 1
Problem:
True or False? If $x$ and $y$ are linearly independent, and if $\{\textbf{x}, \textbf{y}, \textbf{z}\}$ is linearly dependent, then $\textbf{z}$ is in Span $\{\textbf{x},\textbf{y}\}$
Solution:
$\textbf{True}$. If $a\textbf{x} + b\textbf{y} = \textbf{0}$ is true and if $a\textbf{x} + b\textbf{y} + c\textbf{z} = \textbf{0}$ is true, then $-a\textbf{x} -b\textbf{y} = \textbf{z}$ must also be true because when $c = 1$: \begin{align*}a\textbf{x} + b\textbf{y} + (1)\textbf{z} = \textbf{0}\end{align*}, we have the non-trivial solution. Furthermore,
\begin{align*}a\textbf{x} + b\textbf{y} + \textbf{z} = \textbf{0}\end{align*} becomes
\begin{align*}a\textbf{x} + b\textbf{y} = -\textbf{z}\end{align*} which simplifies to
\begin{align*}-a\textbf{x} + -b\textbf{y} = \textbf{z}\end{align*}
True or False? If $x$ and $y$ are linearly independent, and if $\{\textbf{x}, \textbf{y}, \textbf{z}\}$ is linearly dependent, then $\textbf{z}$ is in Span $\{\textbf{x},\textbf{y}\}$
Solution:
$\textbf{True}$. If $a\textbf{x} + b\textbf{y} = \textbf{0}$ is true and if $a\textbf{x} + b\textbf{y} + c\textbf{z} = \textbf{0}$ is true, then $-a\textbf{x} -b\textbf{y} = \textbf{z}$ must also be true because when $c = 1$: \begin{align*}a\textbf{x} + b\textbf{y} + (1)\textbf{z} = \textbf{0}\end{align*}, we have the non-trivial solution. Furthermore,
\begin{align*}a\textbf{x} + b\textbf{y} + \textbf{z} = \textbf{0}\end{align*} becomes
\begin{align*}a\textbf{x} + b\textbf{y} = -\textbf{z}\end{align*} which simplifies to
\begin{align*}-a\textbf{x} + -b\textbf{y} = \textbf{z}\end{align*}
Last edited: