- #1
Boy_saber
- 1
- 0
In the paper https://arxiv.org/abs/1210.4699. How to solve this equation?
I've tried it, it's not same as in this paper. Even zero order still not the same.
This is what I try to do at zero order.
input
$$E=E_0\left(r_0\right)$$
$$H=H_0\left(r_0\right)$$
$$b=b\left(r_0\right)$$
$$R=R_0\left(r_0\right)$$
$$\Phi =\Phi _0\left(r_0\right)$$
$$r=r_0$$
$$g^{11}=1-\frac{b}{r}$$
$$\Box f_R=H g^{11} \left(\frac{\partial R}{\partial r_0}\right){}^2+E \left(\left(1-\frac{b}{r}\right) \left(\frac{\partial R}{\partial r_0} \left(-\frac{\partial \Phi }{\partial r_0}\right)+\frac{\frac{\partial R}{\partial r_0}}{r}+\frac{\partial }{\partial r_0}\frac{\partial R}{\partial r_0}\right)+\frac{\left(1-\frac{\partial b}{\partial r_0}\right) \frac{\partial R}{\partial r_0}}{r}\right)$$
output
$$-\frac{b\left(r_0\right) H_0\left(r_0\right) R_0'\left(r_0\right){}^2}{r_0}+\frac{b\left(r_0\right) E_0\left(r_0\right) R_0'\left(r_0\right) \Phi _0'\left(r_0\right)}{r_0}-\frac{E_0\left(r_0\right) b_0'\left(r_0\right) R_0'\left(r_0\right)}{r_0}-\frac{b\left(r_0\right) E_0\left(r_0\right) R_0'\left(r_0\right)}{r_0^2}-\frac{b\left(r_0\right) E_0\left(r_0\right) R_0''\left(r_0\right)}{r_0}+H_0\left(r_0\right) R_0'\left(r_0\right){}^2-E_0\left(r_0\right) R_0'\left(r_0\right) \Phi _0'\left(r_0\right)+\frac{2 E_0\left(r_0\right) R_0'\left(r_0\right)}{r_0}+E_0\left(r_0\right) R_0''\left(r_0\right)$$
Where did I make a mistake?
I've tried it, it's not same as in this paper. Even zero order still not the same.
This is what I try to do at zero order.
input
$$E=E_0\left(r_0\right)$$
$$H=H_0\left(r_0\right)$$
$$b=b\left(r_0\right)$$
$$R=R_0\left(r_0\right)$$
$$\Phi =\Phi _0\left(r_0\right)$$
$$r=r_0$$
$$g^{11}=1-\frac{b}{r}$$
$$\Box f_R=H g^{11} \left(\frac{\partial R}{\partial r_0}\right){}^2+E \left(\left(1-\frac{b}{r}\right) \left(\frac{\partial R}{\partial r_0} \left(-\frac{\partial \Phi }{\partial r_0}\right)+\frac{\frac{\partial R}{\partial r_0}}{r}+\frac{\partial }{\partial r_0}\frac{\partial R}{\partial r_0}\right)+\frac{\left(1-\frac{\partial b}{\partial r_0}\right) \frac{\partial R}{\partial r_0}}{r}\right)$$
output
$$-\frac{b\left(r_0\right) H_0\left(r_0\right) R_0'\left(r_0\right){}^2}{r_0}+\frac{b\left(r_0\right) E_0\left(r_0\right) R_0'\left(r_0\right) \Phi _0'\left(r_0\right)}{r_0}-\frac{E_0\left(r_0\right) b_0'\left(r_0\right) R_0'\left(r_0\right)}{r_0}-\frac{b\left(r_0\right) E_0\left(r_0\right) R_0'\left(r_0\right)}{r_0^2}-\frac{b\left(r_0\right) E_0\left(r_0\right) R_0''\left(r_0\right)}{r_0}+H_0\left(r_0\right) R_0'\left(r_0\right){}^2-E_0\left(r_0\right) R_0'\left(r_0\right) \Phi _0'\left(r_0\right)+\frac{2 E_0\left(r_0\right) R_0'\left(r_0\right)}{r_0}+E_0\left(r_0\right) R_0''\left(r_0\right)$$
Where did I make a mistake?