- #1
PowMath
- 1
- 0
Hello! I'm a beginner in discrete math and don't actually know how to solve the bool algebra and logc problems. Sorry for errors in formulas - it's my first post here.
I have some tasks that I want someone could help for me to solve.
Step-by-step solutions would be really good, to really know how these tasks can be done (main purpose is to gain more knowledge in these things):
Letters $C$, $B$ and $D$ mark these facts: $C$ = "R is a student"; $B$ = "G is a sstudent"; $D$ = "P is a student.".
1. Then the fact "There is even one student between these boys" could express by the formula:
A. $\overline{C\& B\& D}$;
B. $C\& B\& D$;
C. $\overline{C\lor B\lor D}$;
D. $C\& B\lor D$;
E. $C\lor B\& D$;
F. $C\lor B\lor D$.
2. The same fact could also be written:
A. $\overline{\overline{C}\& B\& D}$;
B. $\overline{\overline{C}\& \overline{B}\& \overline{D}}$;
C. $\overline{C\& B\& D}$;
D. $C\& B\lor D$;
E. $\overline{C\lor B\lor D}$;
F. $C\lor B\& D$.
3. Formula $\overline{C}\lor \overline{B}\lor \overline{D}$ means the following:
A. Someone, R, G or P (may all) is not a student;
B. Or R, or G is not a student (but not both) and P is not a student;
C. And R, and G is not a student or (but not both) P is not a student;
D. Someone, R, G or P (but not all) is not a student.
4. Function $p(t,s,u)$ is defined the following truth table:
\begin{tabular}{c|c|c|c}t & s & u & p \hline $0$&$0$&$0$&$ 1$ \hline$0$&$0$&$1$&$ 1$ \hline$0$&$1$&$0$&$ 0$ \hline$0$&$1$&$1$&$ 0$ \hline$1$&$0$&$0$&$ 0$ \hline$1$&$0$&$1$&$ 0$ \hline$1$&$1$&$0$&$ 1$ \hline$1$&$1$&$1$&$ 1$ \end{tabular} } Then $p^*(t,s,u)=$:
A. \begin{tabular}{|c|}$p^*$ \hline $ 1$ \hline$ 0$ \hline$ 1$ \hline$ 0$ \hline$ 0$ \hline$ 1$ \hline$ 1$ \hline$ 0$ \end{tabular};
B. \begin{tabular}{|c|}$p^*$ \hline $ 1$ \hline$ 1$ \hline$ 0$ \hline$ 0$ \hline$ 0$ \hline$ 0$ \hline$ 1$ \hline$ 1$ \end{tabular};
C. \begin{tabular}{|c|}$p^*$ \hline $ 1$ \hline$ 0$ \hline$ 1$ \hline$ 0$ \hline$ 1$ \hline$ 1$ \hline$ 0$ \hline$ 0$ \end{tabular};
D. \begin{tabular}{|c|}$p^*$ \hline $ 0$ \hline$ 0$ \hline$ 1$ \hline$ 1$ \hline$ 1$ \hline$ 1$ \hline$ 0$ \hline$ 0$ \end{tabular}.
5. Which fact is correct?
1) $p(t,s,u)=\left(p(t,s,u)\right)^*$;
2) $p(t,s,u)=\left(\left(p(t,s,u)\right)^*\right)^*$.
A. None of them;
B. Both ffacts;
C. 2);
D. 1).
Bool function $G(y,s)$ expressed using the formula $\overline{ (\overline{y}\Rightarrow s)\& (y\Rightarrow \overline{s}) }$:
6. Which fact is correct?
1) function $G(y,s)$ does not change zero;
2) function $G(y,s)$ does not change one.
A. Fact 2;
B. Both facts;
C. Fact 1;
D. None of them.
7. Logical equation $G(y,s)=1$ has number of solutions:
A. 2;
B. 1;
C. No solutions;
D. 3;
E. 4.
8. DNF of the function $G(y,s)$ is:
A. $\overline{y}\& \overline{s} \lor y\& \overline{s} \lor y\& s$;
B. $\overline{y}\& \overline{s} \lor y\& \overline{s}$;
C. $\overline{y}\& \overline{s} \lor y\& s$;
D. $\overline{y}\& \overline{s} \lor \overline{y}\& s$.
9. CNF of the function $G(y,s)$ is:
A. $(y \lor \overline{s})\& (\overline{y} \lor \overline{s})$;
B. $(y \lor \overline{s})\& (\overline{y} \lor s)$;
C. $(\overline{y} \lor s)\& (\overline{y} \lor \overline{s})$;
D. $(y \lor \overline{s})$.Functions $\alpha(x,y,z)$, $\beta(x,y,z)$, $\gamma(x,y,z)$ are defined of their truth tables: \begin{tabular}{c|c|c|c|c|c}$x$&$y$&$z$&$\alpha$&$\beta$&$\gamma$\hline $0$&$0$&$0$&$1$&$0$&$0$ $0$&$0$&$1$&$0$&$1$&$1$ $0$&$1$&$0$&$1$&$1$&$1$ $0$&$1$&$1$&$0$&$0$&$0$ $1$&$0$&$0$&$1$&$1$&$1$ $1$&$0$&$1$&$0$&$0$&$0$ $1$&$1$&$0$&$0$&$0$&$0$ $1$&$1$&$1$&$1$&$1$&$1$ \end{tabular} Indicate correct facts:
10. Which function does not change zero and one?
A. None of them;
B. $\alpha$ and $\gamma$;
C. all functions;
D. $\alpha$;
E. $\beta$ and $\gamma$;
F. $\gamma$;
G. $\alpha$ and $\beta$;
H. $\beta$.
11. Which function is self-dual?
A. $\beta$;
B. $\gamma$;
C. None of them;
D. $\alpha$ and $\gamma$;
E. $\alpha$ and $\beta$;
F. all functions;
G. $\alpha$;
H. $\beta$ and $\gamma$.
12. Which function is monotonic?
A. $\alpha$ and $\gamma$;
B. $\gamma$;
C. None of them;
D. $\beta$;
E. $\alpha$ and $\beta$;
F. all functions;
G. $\alpha$;
H. $\beta$ and $\gamma$.
13 Which function has even one fiction variable?
A. $\alpha$;
B. $\alpha$ and $\gamma$;
C. $\beta$;
D. $\gamma$;
E. None of them;
F. all functions;
G. $\beta$ and $\gamma$;
H. $\alpha$ and $\beta$.
14. Which function is linear?
A. $\gamma$;
B. $\alpha$ and $\beta$;
C. $\beta$;
D. $\alpha$;
E. $\alpha$ and $\gamma$;
F. all functions;
G. $\beta$ and $\gamma$;
H. None of them.
Thanks for your help, I really appreciate it. :)
I have some tasks that I want someone could help for me to solve.
Step-by-step solutions would be really good, to really know how these tasks can be done (main purpose is to gain more knowledge in these things):
Letters $C$, $B$ and $D$ mark these facts: $C$ = "R is a student"; $B$ = "G is a sstudent"; $D$ = "P is a student.".
1. Then the fact "There is even one student between these boys" could express by the formula:
A. $\overline{C\& B\& D}$;
B. $C\& B\& D$;
C. $\overline{C\lor B\lor D}$;
D. $C\& B\lor D$;
E. $C\lor B\& D$;
F. $C\lor B\lor D$.
2. The same fact could also be written:
A. $\overline{\overline{C}\& B\& D}$;
B. $\overline{\overline{C}\& \overline{B}\& \overline{D}}$;
C. $\overline{C\& B\& D}$;
D. $C\& B\lor D$;
E. $\overline{C\lor B\lor D}$;
F. $C\lor B\& D$.
3. Formula $\overline{C}\lor \overline{B}\lor \overline{D}$ means the following:
A. Someone, R, G or P (may all) is not a student;
B. Or R, or G is not a student (but not both) and P is not a student;
C. And R, and G is not a student or (but not both) P is not a student;
D. Someone, R, G or P (but not all) is not a student.
4. Function $p(t,s,u)$ is defined the following truth table:
\begin{tabular}{c|c|c|c}t & s & u & p \hline $0$&$0$&$0$&$ 1$ \hline$0$&$0$&$1$&$ 1$ \hline$0$&$1$&$0$&$ 0$ \hline$0$&$1$&$1$&$ 0$ \hline$1$&$0$&$0$&$ 0$ \hline$1$&$0$&$1$&$ 0$ \hline$1$&$1$&$0$&$ 1$ \hline$1$&$1$&$1$&$ 1$ \end{tabular} } Then $p^*(t,s,u)=$:
A. \begin{tabular}{|c|}$p^*$ \hline $ 1$ \hline$ 0$ \hline$ 1$ \hline$ 0$ \hline$ 0$ \hline$ 1$ \hline$ 1$ \hline$ 0$ \end{tabular};
B. \begin{tabular}{|c|}$p^*$ \hline $ 1$ \hline$ 1$ \hline$ 0$ \hline$ 0$ \hline$ 0$ \hline$ 0$ \hline$ 1$ \hline$ 1$ \end{tabular};
C. \begin{tabular}{|c|}$p^*$ \hline $ 1$ \hline$ 0$ \hline$ 1$ \hline$ 0$ \hline$ 1$ \hline$ 1$ \hline$ 0$ \hline$ 0$ \end{tabular};
D. \begin{tabular}{|c|}$p^*$ \hline $ 0$ \hline$ 0$ \hline$ 1$ \hline$ 1$ \hline$ 1$ \hline$ 1$ \hline$ 0$ \hline$ 0$ \end{tabular}.
5. Which fact is correct?
1) $p(t,s,u)=\left(p(t,s,u)\right)^*$;
2) $p(t,s,u)=\left(\left(p(t,s,u)\right)^*\right)^*$.
A. None of them;
B. Both ffacts;
C. 2);
D. 1).
Bool function $G(y,s)$ expressed using the formula $\overline{ (\overline{y}\Rightarrow s)\& (y\Rightarrow \overline{s}) }$:
6. Which fact is correct?
1) function $G(y,s)$ does not change zero;
2) function $G(y,s)$ does not change one.
A. Fact 2;
B. Both facts;
C. Fact 1;
D. None of them.
7. Logical equation $G(y,s)=1$ has number of solutions:
A. 2;
B. 1;
C. No solutions;
D. 3;
E. 4.
8. DNF of the function $G(y,s)$ is:
A. $\overline{y}\& \overline{s} \lor y\& \overline{s} \lor y\& s$;
B. $\overline{y}\& \overline{s} \lor y\& \overline{s}$;
C. $\overline{y}\& \overline{s} \lor y\& s$;
D. $\overline{y}\& \overline{s} \lor \overline{y}\& s$.
9. CNF of the function $G(y,s)$ is:
A. $(y \lor \overline{s})\& (\overline{y} \lor \overline{s})$;
B. $(y \lor \overline{s})\& (\overline{y} \lor s)$;
C. $(\overline{y} \lor s)\& (\overline{y} \lor \overline{s})$;
D. $(y \lor \overline{s})$.Functions $\alpha(x,y,z)$, $\beta(x,y,z)$, $\gamma(x,y,z)$ are defined of their truth tables: \begin{tabular}{c|c|c|c|c|c}$x$&$y$&$z$&$\alpha$&$\beta$&$\gamma$\hline $0$&$0$&$0$&$1$&$0$&$0$ $0$&$0$&$1$&$0$&$1$&$1$ $0$&$1$&$0$&$1$&$1$&$1$ $0$&$1$&$1$&$0$&$0$&$0$ $1$&$0$&$0$&$1$&$1$&$1$ $1$&$0$&$1$&$0$&$0$&$0$ $1$&$1$&$0$&$0$&$0$&$0$ $1$&$1$&$1$&$1$&$1$&$1$ \end{tabular} Indicate correct facts:
10. Which function does not change zero and one?
A. None of them;
B. $\alpha$ and $\gamma$;
C. all functions;
D. $\alpha$;
E. $\beta$ and $\gamma$;
F. $\gamma$;
G. $\alpha$ and $\beta$;
H. $\beta$.
11. Which function is self-dual?
A. $\beta$;
B. $\gamma$;
C. None of them;
D. $\alpha$ and $\gamma$;
E. $\alpha$ and $\beta$;
F. all functions;
G. $\alpha$;
H. $\beta$ and $\gamma$.
12. Which function is monotonic?
A. $\alpha$ and $\gamma$;
B. $\gamma$;
C. None of them;
D. $\beta$;
E. $\alpha$ and $\beta$;
F. all functions;
G. $\alpha$;
H. $\beta$ and $\gamma$.
13 Which function has even one fiction variable?
A. $\alpha$;
B. $\alpha$ and $\gamma$;
C. $\beta$;
D. $\gamma$;
E. None of them;
F. all functions;
G. $\beta$ and $\gamma$;
H. $\alpha$ and $\beta$.
14. Which function is linear?
A. $\gamma$;
B. $\alpha$ and $\beta$;
C. $\beta$;
D. $\alpha$;
E. $\alpha$ and $\gamma$;
F. all functions;
G. $\beta$ and $\gamma$;
H. None of them.
Thanks for your help, I really appreciate it. :)