- #1
yungman
- 5,755
- 293
This is part of the derivation in EM theory. I try to simplify and be very specific. I don't agree with the book but this book usually is accurate:
I need to find:
[tex]cos (\frac {n\pi}{2} + \frac {n\pi x}{2}) \;\hbox { where }\; n= 1,3,5...[/tex]
The usual way to solve this is:
[tex] cos (A+B) = cos A cos B - sin A sin B [/tex]
[tex]\Rightarrow \; cos (\frac {n\pi}{2} + \frac {n\pi x}{2}) = cos (\frac {n\pi}{2}) cos ( \frac {n\pi x}{2}) - sin (\frac {n\pi}{2}) sin ( \frac {n\pi x}{2}) [/tex]
[tex]\Rightarrow \; cos (\frac {n\pi}{2} + \frac {n\pi x}{2}) = - sin (\frac {n\pi}{2}) sin ( \frac {n\pi x}{2}) \;\hbox { because }\; cos (\frac {n\pi}{2}) = 0 [/tex]
[tex] sin (\frac {n\pi}{2}) = 1 \hbox { for } \;n=1,\;\;\; sin (\frac {n\pi}{2}) = -1 \;\hbox { for } \; n=3,\;\;\; sin (\frac {n\pi}{2}) = 1 \;\hbox { for }\; n=5.[/tex]
Therefore the answer change sign with different n. But the book gave:
[tex]cos (\frac {n\pi}{2} + \frac {n\pi x}{2}) = -sin (\frac {n\pi x}{2}) [/tex]
There is no sign change according to the book. What am I missing? Please help.
Thanks
Alan
I need to find:
[tex]cos (\frac {n\pi}{2} + \frac {n\pi x}{2}) \;\hbox { where }\; n= 1,3,5...[/tex]
The usual way to solve this is:
[tex] cos (A+B) = cos A cos B - sin A sin B [/tex]
[tex]\Rightarrow \; cos (\frac {n\pi}{2} + \frac {n\pi x}{2}) = cos (\frac {n\pi}{2}) cos ( \frac {n\pi x}{2}) - sin (\frac {n\pi}{2}) sin ( \frac {n\pi x}{2}) [/tex]
[tex]\Rightarrow \; cos (\frac {n\pi}{2} + \frac {n\pi x}{2}) = - sin (\frac {n\pi}{2}) sin ( \frac {n\pi x}{2}) \;\hbox { because }\; cos (\frac {n\pi}{2}) = 0 [/tex]
[tex] sin (\frac {n\pi}{2}) = 1 \hbox { for } \;n=1,\;\;\; sin (\frac {n\pi}{2}) = -1 \;\hbox { for } \; n=3,\;\;\; sin (\frac {n\pi}{2}) = 1 \;\hbox { for }\; n=5.[/tex]
Therefore the answer change sign with different n. But the book gave:
[tex]cos (\frac {n\pi}{2} + \frac {n\pi x}{2}) = -sin (\frac {n\pi x}{2}) [/tex]
There is no sign change according to the book. What am I missing? Please help.
Thanks
Alan