- #1
member 428835
Hi PF!
Here looking at the first answer are two awesome examples of a vibrating membrane plotted from a top view. I can create the first example via
However, I can't figure out how to create that brown plot they do (their second plot). Any suggestions (obviously my plot is a parametric 3D plot, so the form is different, hence what's killing me).
Here looking at the first answer are two awesome examples of a vibrating membrane plotted from a top view. I can create the first example via
Code:
fXYZ =
{Cos[\[Theta]] Csc[\[Pi]/180] Sin[s Sin[\[Pi]/180]] -
0.001 Cos[\[Theta]] Cos[2 \[Theta]] Sin[
s Sin[\[Pi]/
180]] (10.7721 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
1.52712 (BesselJ[1,
175.004 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
175.004 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
3.05424 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
3.05424 BesselJ[2,
175.004 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
3.05424 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])) +
0.0939376 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
3.35307 (BesselJ[1,
384.253 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
384.253 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
6.70613 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
6.70613 BesselJ[2,
384.253 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
6.70613 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])) -
0.000899129 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
4.98473 (BesselJ[1,
571.237 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
571.237 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
9.96947 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
9.96947 BesselJ[2,
571.237 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
9.96947 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])) +
0.0000163397 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
6.58519 (BesselJ[1,
754.645 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
754.645 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
13.1704 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
13.1704 BesselJ[2,
754.645 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
13.1704 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])) -
3.74518*10^-7 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
8.17376 (BesselJ[1,
936.692 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
936.692 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
16.3475 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
16.3475 BesselJ[2,
936.692 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
16.3475 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])) +
9.80625*10^-9 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
9.75646 (BesselJ[1,
1118.06 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
1118.06 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
19.5129 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
19.5129 BesselJ[2,
1118.06 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
19.5129 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])) -
2.94642*10^-10 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
11.3358 (BesselJ[1,
1299.05 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
1299.05 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
22.6716 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
22.6716 BesselJ[2,
1299.05 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
22.6716 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]))),
Csc[\[Pi]/180] Sin[\[Theta]] Sin[s Sin[\[Pi]/180]] -
0.001 Cos[2 \[Theta]] Sin[\[Theta]] Sin[
s Sin[\[Pi]/
180]] (10.7721 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
1.52712 (BesselJ[1,
175.004 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
175.004 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
3.05424 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
3.05424 BesselJ[2,
175.004 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
3.05424 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])) +
0.0939376 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
3.35307 (BesselJ[1,
384.253 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
384.253 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
6.70613 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
6.70613 BesselJ[2,
384.253 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
6.70613 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])) -
0.000899129 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
4.98473 (BesselJ[1,
571.237 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
571.237 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
9.96947 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
9.96947 BesselJ[2,
571.237 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
9.96947 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])) +
0.0000163397 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
6.58519 (BesselJ[1,
754.645 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
754.645 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
13.1704 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
13.1704 BesselJ[2,
754.645 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
13.1704 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])) -
3.74518*10^-7 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
8.17376 (BesselJ[1,
936.692 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
936.692 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
16.3475 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
16.3475 BesselJ[2,
936.692 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
16.3475 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])) +
9.80625*10^-9 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
9.75646 (BesselJ[1,
1118.06 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
1118.06 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
19.5129 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
19.5129 BesselJ[2,
1118.06 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
19.5129 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])) -
2.94642*10^-10 (0. -
Sqrt[
1 - Cos[s Sin[\[Pi]/180]]^2] (0. +
11.3358 (BesselJ[1,
1299.05 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
1299.05 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
22.6716 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
22.6716 BesselJ[2,
1299.05 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
22.6716 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]))), (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180] + 0.001 Cos[2 \[Theta]] Cos[
s Sin[\[Pi]/
180]] (10.7721 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
1.52712 (BesselJ[1,
175.004 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
175.004 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
3.05424 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
3.05424 BesselJ[2,
175.004 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
3.05424 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])) +
0.0939376 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
3.35307 (BesselJ[1,
384.253 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
384.253 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
6.70613 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
6.70613 BesselJ[2,
384.253 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
6.70613 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])) -
0.000899129 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
4.98473 (BesselJ[1,
571.237 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
571.237 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
9.96947 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
9.96947 BesselJ[2,
571.237 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
9.96947 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])) +
0.0000163397 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
6.58519 (BesselJ[1,
754.645 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
754.645 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
13.1704 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
13.1704 BesselJ[2,
754.645 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
13.1704 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])) -
3.74518*10^-7 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
8.17376 (BesselJ[1,
936.692 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
936.692 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
16.3475 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
16.3475 BesselJ[2,
936.692 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
16.3475 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])) +
9.80625*10^-9 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
9.75646 (BesselJ[1,
1118.06 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
1118.06 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
19.5129 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
19.5129 BesselJ[2,
1118.06 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
19.5129 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])) -
2.94642*10^-10 (0. -
Sqrt[1 -
Cos[s Sin[\[Pi]/180]]^2] (0. +
11.3358 (BesselJ[1,
1299.05 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] -
BesselJ[3,
1299.05 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]]) Cosh[
22.6716 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])]) +
Cos[s Sin[\[Pi]/180]] (0. +
22.6716 BesselJ[2,
1299.05 Sqrt[1 - Cos[s Sin[\[Pi]/180]]^2]] Sinh[
22.6716 (1 + (1 - Cos[s Sin[\[Pi]/180]]) Csc[\[Pi]/
180])])))};
ParametricPlot3D[
Evaluate[fXYZ], {s,
0,1/180 \[Pi] Csc[\[Pi]/180]}, {\[Theta], 0, 2 \[Pi]}, Boxed -> False,
ViewPoint -> {0, 0, Infinity}, Axes -> False,
ColorFunction ->
Function[{x, y, z}, Glow[ColorData["GrayTones", z]]], Mesh -> None,
Lighting -> None]