- #1
- 1,239
- 34
Derivation of Poincare Invariance from general quantum field theory
C.D. Froggatt, H.B. Nielsen
Annalen der Physik, Volume 14, Issue 1-3 , Pages 115 - 147 (2005)
Special Issue commemorating Albert Einstein
Starting from a very general quantum field theory we seek to derive Poincare invariance in the limit of low energy excitations. We do not, of course, assume these symmetries at the outset, but rather only a very general second quantised model. Many of the degrees of freedom on which the fields depend turn out to correspond to a higher dimension. We are not yet perfectly successful. In particular, for the derivation of translational invariance, we need to assume that some background parameters, which a priori vary in space, can be interpreted as gravitational fields in a future extension of our model. Assuming translational invariance arises in this way, we essentially obtain quantum electrodynamics in just 3 + 1 dimensions from our model. The only remaining flaw in the model is that the photon and the various Weyl fermions turn out to have their own separate metric tensors.
http://www.arxiv.org/abs/hep-th/0501149
http://www3.interscience.wiley.com/cgi-bin/abstract/109884430/ABSTRACT
I found this elegant paper after seeing the following passage in Lee Smolin's new book, "The Trouble With Physics":
How can I describe the joy I experienced on reading this paper? An oasis after a long trek in the desert? Reunion with first and true love after long absence? Child nearly died but now safe? Peace and victory after long hard war? None of these examples are strong enough.
When I say that my calculation for the lepton masses is "insane", it is because it is based on an underlying QFT that is not Lorentz invariant and needs preons that travel at [tex]c\sqrt{3}[/tex]. I knew that this was the big problem. Even the professor who taught me QFT a couple decades ago (and gave me the high grade in the class) wouldn't consider my idea because of this fact. I figured that getting it read (or even allowed into arXiv) would be impossible because of this deviation from the norm, but the above article was not only put onto arXiv, but published in a peer reviewed journal. Oh happy day. I will return to writing down the theory in all its non Lorentz invariant glory, to hell with hiding the heresy. Look for it to be complete in a month or two. It will begin with a geometric version of the density matrix formalism and end with the masses of the leptons calculated to 6 decimal places.
Carl
C.D. Froggatt, H.B. Nielsen
Annalen der Physik, Volume 14, Issue 1-3 , Pages 115 - 147 (2005)
Special Issue commemorating Albert Einstein
Starting from a very general quantum field theory we seek to derive Poincare invariance in the limit of low energy excitations. We do not, of course, assume these symmetries at the outset, but rather only a very general second quantised model. Many of the degrees of freedom on which the fields depend turn out to correspond to a higher dimension. We are not yet perfectly successful. In particular, for the derivation of translational invariance, we need to assume that some background parameters, which a priori vary in space, can be interpreted as gravitational fields in a future extension of our model. Assuming translational invariance arises in this way, we essentially obtain quantum electrodynamics in just 3 + 1 dimensions from our model. The only remaining flaw in the model is that the photon and the various Weyl fermions turn out to have their own separate metric tensors.
http://www.arxiv.org/abs/hep-th/0501149
http://www3.interscience.wiley.com/cgi-bin/abstract/109884430/ABSTRACT
I found this elegant paper after seeing the following passage in Lee Smolin's new book, "The Trouble With Physics":
Lee Smolin in The Trouble With Physics" said:(p 315) One of the great seers is Holger Bech Nielsen of the Niels Bohr Institute. He was an inventor of string theory, and he has many other key discoveries to his credit. But for many years he has been isolated from the mainstream for advocating what he calls random dynamics. He believes that the most useful assumption we can make about the fundamental laws is that they are random. Everything we think of as intrinsically true, such as relativity and the principles of quantum mechanics, he thinks are just accidental facts that are emergent from a fundamental theory so beyond our imagining that we might as well assume that its laws are random. His models are the laws of thermodynamics, which used to be based on principles but now are understood as the most likely way that large numbers of atoms in random motion will behave. This may not be right, but Nielsen has come remarkably far in his antiunification program.
How can I describe the joy I experienced on reading this paper? An oasis after a long trek in the desert? Reunion with first and true love after long absence? Child nearly died but now safe? Peace and victory after long hard war? None of these examples are strong enough.
When I say that my calculation for the lepton masses is "insane", it is because it is based on an underlying QFT that is not Lorentz invariant and needs preons that travel at [tex]c\sqrt{3}[/tex]. I knew that this was the big problem. Even the professor who taught me QFT a couple decades ago (and gave me the high grade in the class) wouldn't consider my idea because of this fact. I figured that getting it read (or even allowed into arXiv) would be impossible because of this deviation from the norm, but the above article was not only put onto arXiv, but published in a peer reviewed journal. Oh happy day. I will return to writing down the theory in all its non Lorentz invariant glory, to hell with hiding the heresy. Look for it to be complete in a month or two. It will begin with a geometric version of the density matrix formalism and end with the masses of the leptons calculated to 6 decimal places.
Carl