- #1
OsCiLL8
- 3
- 0
I've been working on this for a little while now (in CGS units), and am not really sure where I've gone wrong at in calculating the potential, so I've come here! Here is the problem:
What is the potential caused by placing a point charge Q at the center of a dielectric sphere ([tex]\epsilon[/tex]2), radius R, that is embedded inside some other infinite slab of dielectric ([tex]\epsilon[/tex]1)?
Here's what I've determined so far:
D(r) = Q/r2
E(r<R) = Q/[tex]\epsilon[/tex]2*r2
E(r>R) = Q/[tex]\epsilon[/tex]1*r2
So, letting P = (D-E)/4[tex]\pi[/tex] , I've found
[tex]\Phi[/tex](r<R) = Q/r + ([tex]\epsilon[/tex]2-1)*Q/(3*[tex]\epsilon[/tex]2*r)
[tex]\Phi[/tex](r>R) = Q/r + ([tex]\epsilon[/tex]1-1)*Q/(3*[tex]\epsilon[/tex]1*r)
My question is, shouldn't I have the option of allowing the potential to be continuous at the interface?? Have I left out some surface charge polarization or something?
What is the potential caused by placing a point charge Q at the center of a dielectric sphere ([tex]\epsilon[/tex]2), radius R, that is embedded inside some other infinite slab of dielectric ([tex]\epsilon[/tex]1)?
Here's what I've determined so far:
D(r) = Q/r2
E(r<R) = Q/[tex]\epsilon[/tex]2*r2
E(r>R) = Q/[tex]\epsilon[/tex]1*r2
So, letting P = (D-E)/4[tex]\pi[/tex] , I've found
[tex]\Phi[/tex](r<R) = Q/r + ([tex]\epsilon[/tex]2-1)*Q/(3*[tex]\epsilon[/tex]2*r)
[tex]\Phi[/tex](r>R) = Q/r + ([tex]\epsilon[/tex]1-1)*Q/(3*[tex]\epsilon[/tex]1*r)
My question is, shouldn't I have the option of allowing the potential to be continuous at the interface?? Have I left out some surface charge polarization or something?