- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I want to check the pointwise and uniform convergence for the following sequences or series of functions:
We have the following:
I have done the following:
For the cases 4. and 5. do we use the Weierstrass criterium? Or do we use the definition? (Wondering)
I want to check the pointwise and uniform convergence for the following sequences or series of functions:
- $f_n:[0, \infty)\rightarrow \mathbb{R}, f_n(x)=xe^{-nx}$ for all $n\in \mathbb{N}$
- $f_n:[0, \infty)\rightarrow \mathbb{R}, f_n(x)=nxe^{-nx}$ for all $n\in \mathbb{N}$
- $f_n:[0, 1]\rightarrow \mathbb{R}, f_n(x)=\sqrt[n]{n^2x}$ for all $n\in \mathbb{N}$
- $\displaystyle{\sum_{n=1}^{\infty}\frac{1}{nx-n^2}}$ for $x\in (0,1)$
- $\displaystyle{\sum_{n=0}^{\infty}\frac{\sin (x)}{(1+x^4)^n}}$ for $x\in \mathbb{R}$
We have the following:
- The sequence of functions $(f_n)$ is on $D$ pointwise convergent iff for each $x\in D$ the sequence $(f_n(x))$ is convergent.
- The series of functions $\displaystyle{\sum_{n=1}^{\infty}f_n}$ is on $D$ pointwise konvergent iff for each $x\in D$ the sequence $(s_n(x))$ is convergent.
- $(f_n)$ converges on $D$ uniformly to $f: D\rightarrow \mathbb{R}$ iff $\forall \epsilon>0 \ \exists n_0=n_0(\epsilon)\in \mathbb{N}\ \ \forall n\geq n_0 \ \ \forall x\in D: |f_n(x)-f(x)|<\epsilon$.
- $\displaystyle{\sum_{n=1}^{\infty}f_n}$ converges on $D$ uniformly to $f: D\rightarrow \mathbb{R}$ iff $\forall \epsilon>0 \ \exists n_0=n_0(\epsilon)\in \mathbb{N}\ \ \forall n\geq n_0 \ \ \forall x\in D: |s_n(x)-f(x)|<\epsilon$.
I have done the following:
- We have that $$f(x)=\lim_{n\rightarrow \infty}f_n(x)=\lim_{n\rightarrow\infty}\frac{x}{e^{nx}}=0$$
For each $x\in [0, \infty)$ the sequence $(f_n(x))$ converges. So the sequence of function $(f_n)$ converges on $[0,\infty)$ pointwise to $f$.
To check the uniform convergence we have that $|f_n(x)-f(x)|=\frac{x}{e^{nx}}$. What do we do next? (Wondering)
- We have that $$f(x)=\lim_{n\rightarrow \infty}f_n(x)=\lim_{n\rightarrow\infty}\frac{nx}{e^{nx}}=\lim_{n\rightarrow\infty}\frac{nx}{\frac{\sum_{k=1}^{\infty}(nx)^k}{k!}}=\sum_{k=1}^{\infty}\frac{xk!}{\lim_{n\rightarrow \infty}\left (\frac{nx}{n}+\sum_{k=2}^{\infty}(nx)^{k-1}\right )}=0$$ Is this correct? (Wondering)
For each $x\in [0, \infty)$ the sequence $(f_n(x))$ converges. So the sequence of function $(f_n)$ converges on $[0,\infty)$ pointwise to $f$.
To check the uniform convergence we have that $|f_n(x)-f(x)|=\frac{nx}{e^{nx}}$. How could we continue? (Wondering)
- We have that when $x=0$ then $$f(x)=\lim_{n\rightarrow \infty}f_n(x)=\lim_{n\rightarrow \infty}\sqrt[n]{n^2\cdot 0}=0$$
When $x\in (0,1]$ we have that $$f(x)=\lim_{n\rightarrow \infty}f_n(x)=\lim_{n\rightarrow \infty}\sqrt[n]{n^2x}$$ Is this equal to $1$ ? (Wondering)
For the cases 4. and 5. do we use the Weierstrass criterium? Or do we use the definition? (Wondering)