Poisson process is identical on equal intervals?

In summary, a Poisson process is characterized by the property that the number of events occurring in non-overlapping intervals is independent and follows a Poisson distribution. This means that for equal intervals, the distribution of events remains consistent, highlighting that the process is stationary. Therefore, the behavior of the Poisson process is identical across equal time intervals, reinforcing its fundamental characteristics of randomness and independence in the context of event occurrence.
  • #1
docnet
Gold Member
799
486
Homework Statement
Please see the red step, I don't think it's a correct step because the parts don't add up right.
Relevant Equations
.
Let ##N_t## be the Poisson point process with the probability of the random variable ##N_t## being equal to ##x## is given by $$\frac{(\lambda t)^xe^{-\lambda t}}{x!}.$$ ##N_t## has stationary and independent increments, so for any ##\alpha\geq 0, t\geq 0,## the distribution of ##X_t = N_{t+\alpha} -N_t## is independent of ##t.##

I'm trying to show this explicitly.


$$
\begin{align*}
X_{t}&= N_{t+\alpha}-N_{t} \\
&= N_{t} + N_\alpha -N_{t} \\
&= N_\alpha \\
&=\frac{(\lambda \alpha)^xe^{-\lambda \alpha}}{x!} .
\end{align*}$$

I don't think it's correct because
$$\begin{align*}
N_{t} + N_\alpha &= \frac{(\lambda t)^xe^-{\lambda t}}{x!} +\frac{(\lambda \alpha)^xe^{-\lambda \alpha}}{x!} \\
&\neq \frac{(\lambda (t+\alpha))^xe^{-\lambda (t+\alpha)}}{x!}= N_{t+\alpha} .
\end{align*}$$
 
Last edited:
Physics news on Phys.org
  • #2
The latex formatting issues are fixed.
 
Last edited:
  • #3
You are not trying to show the correct thing. What your last equation would imply is that the probability of ##N_t## and ##N_\alpha## being ##x## is equal to the probability of ##N_{\alpha+t}## being ##x##.

What you should be showing is that the probability of ##N_{\alpha+t}## being ##x## is the same as the sum of the probabilities of ##N_t## being ##y## at the same time as ##N_\alpha## is ##x-y## for all ##y##.

A random variable is not equal to the probability of it being ##x##.
 
  • Informative
Likes docnet
  • #4
Orodruin said:
You are not trying to show the correct thing. What your last equation would imply is that the probability of ##N_t## and ##N_\alpha## being ##x## is equal to the probability of ##N_{\alpha+t}## being ##x##.
You're so right! I knew it didn't quite make sense but I didn't have the knowledge to pinpoint the reason. Thank you.
Orodruin said:
What you should be showing is that the probability of ##N_{\alpha+t}## being ##x## is the same as the sum of the probabilities of ##N_t## being ##y## at the same time as ##N_\alpha## is ##x-y## for all ##y##.
Would it be better, then, to say
$$
\begin{align*}
N_{t+\alpha} -N_t&=\Big(\mathbb{E}\Big[ \frac{(\lambda t)^ye^{-\lambda t}}{y!} \Big]+\frac{(\lambda (t+\alpha))^xe^{-\lambda (\alpha)}}{x!}\Big)-\mathbb{E}\Big[ \frac{(\lambda t)^ye^{-\lambda t}}{y!} \Big]\\
&= \frac{(\lambda \alpha)^xe^{-\lambda (\alpha)}}{x!}= N_{\alpha} ?
\end{align*}$$

Orodruin said:
A random variable is not equal to the probability of it being ##x##.
You're right! So instead the probability function of the random variable ##N_t## gives the probabilities of it being ##x##, given that ##x=0## with probability ##1## at ##t=0##? 🤔
 
  • #5
docnet said:
Would it be better, then, to say
$$
\begin{align*}
N_{t+\alpha} -N_t&=\Big(\mathbb{E}\Big[ \frac{(\lambda t)^ye^{-\lambda t}}{y!} \Big]+\frac{(\lambda (t+\alpha))^xe^{-\lambda (\alpha)}}{x!}\Big)-\mathbb{E}\Big[ \frac{(\lambda t)^ye^{-\lambda t}}{y!} \Big]\\
&= \frac{(\lambda \alpha)^xe^{-\lambda (\alpha)}}{x!}= N_{\alpha} ?
\end{align*}$$
Not really. You are still mixing up the probabilities with the random variable itself.

docnet said:
You're right! So instead the probability function of the random variable ##N_t## gives the probabilities of it being ##x##, given that ##x=0## with probability ##1## at ##t=0##? 🤔
Yes, which is definitely not the same as ##N_t## itself. The probsbilities are any numbers between 0 and 1 and ##N_t## is a discrete RV which takes imteger values.
 
  • Informative
Likes docnet
  • #6
So I looked at my notes again, and it turns out one way to show (maybe it's wrong) that distribution of ##N_{\alpha+t}-N_t## is independent of ##t## is by using the definition of the counting process: for any ##\alpha,t\geq 0##, ##N_{\alpha+t}-N_t## equals the number of events that occur in the interval ##(\alpha,t]##, then use the fact that ##N_t## has stationary increments to say ##N_{\alpha+t}-N_t=N_\alpha## for all ##\alpha,t\geq 0##.

Is it ok to say that the independence of the increments of ##N_t## is not required because the stationary property? I thank you for your effort and patience in helping me learn Stochastic processes.
 

FAQ: Poisson process is identical on equal intervals?

What is a Poisson process?

A Poisson process is a stochastic process that models a sequence of events occurring randomly over time or space, where the number of events in any given interval follows a Poisson distribution. It is characterized by its rate parameter, λ, which represents the average number of events per unit time or space.

Are Poisson processes identical on equal intervals?

Yes, one of the key properties of a Poisson process is that the number of events occurring in disjoint intervals of equal length are identically distributed. This means that for any two intervals of the same length, the number of events in each interval follows the same Poisson distribution with the same rate parameter, λ.

How does the rate parameter λ affect the Poisson process?

The rate parameter λ determines the average number of events per unit time or space in a Poisson process. A higher λ means that events occur more frequently, while a lower λ indicates that events are less frequent. The parameter λ is crucial in defining the Poisson distribution for the number of events in any given interval.

Can the intervals in a Poisson process overlap?

While the intervals in a Poisson process can technically overlap, the key property of identically distributed events applies to disjoint (non-overlapping) intervals. In overlapping intervals, the events in the overlapping portion would be counted in both intervals, which would violate the assumption of independence between intervals.

How do you verify that a given process is a Poisson process?

To verify that a given process is a Poisson process, you need to check several properties: (1) The number of events in non-overlapping intervals are independent, (2) The number of events in an interval of length t follows a Poisson distribution with parameter λt, and (3) The process has stationary increments, meaning that the probability of a certain number of events occurring in an interval depends only on the length of the interval, not its position.

Back
Top