- #1
Roadtripper
- 4
- 2
Hi everyone,
there's something that I can't comprehend: when a homogeneous is in a conservative and non-uniform in module electric field polarization expression is given by P=ε0χE. Supposing the most general situation there's: divP=ρp where ρp is the polarization charge density in the dielectric. When my textbook introduces the electric induction vector D=ε0E + P it says that divD=0 if in the volume (the dielectric material) you are going to integrate the divergence there are no free charges and it makes absolutely sense. Troubles have come in my mind when it states that this means divP=ρp=0 too because "every electrostatic field makes the variation end up with 0". I mean what's the characteristic of electrostatic conservative non-uniform (in module) fields to make divP=0? I think I missed some logics here. I mean, why does it jump to the conclusion that polarization charges are only located on the surfaces of the dielectric material?
there's something that I can't comprehend: when a homogeneous is in a conservative and non-uniform in module electric field polarization expression is given by P=ε0χE. Supposing the most general situation there's: divP=ρp where ρp is the polarization charge density in the dielectric. When my textbook introduces the electric induction vector D=ε0E + P it says that divD=0 if in the volume (the dielectric material) you are going to integrate the divergence there are no free charges and it makes absolutely sense. Troubles have come in my mind when it states that this means divP=ρp=0 too because "every electrostatic field makes the variation end up with 0". I mean what's the characteristic of electrostatic conservative non-uniform (in module) fields to make divP=0? I think I missed some logics here. I mean, why does it jump to the conclusion that polarization charges are only located on the surfaces of the dielectric material?