- #1
Math Amateur
Gold Member
MHB
- 3,998
- 48
I am reading D. J. H. Garling's book: "A Course in Mathematical Analysis: Volume II: Metric and Topological Spaces, Functions of a Vector Variable" ... ...
I am focused on Chapter 11: Metric Spaces and Normed Spaces ... ...
I need some help with the polarization formula for the complex case ...
Garling's statement of the polarization formulae reads as follows:https://www.physicsforums.com/attachments/7914In the above text from Garling we read the following:" ... ... in the complex case we have the polarization formula \(\displaystyle \langle x,y \rangle = \frac{1}{4} \left( \sum_{ j = 0 }^3 i^j \| x + i^j y \|^2 \right)\) ... ... "
Can someone please demonstrate how to prove that \(\displaystyle \langle x,y \rangle = \frac{1}{4} \left( \sum_{ j = 0 }^3 i^j \| x + i^j y \|^2 \right)\) ...?Help will be appreciated ...
Peter
==========================================================================================***NOTE***
It may help readers of the above post to know Garling's notation and approach to inner-product spaces ... ... so I am providing the same ... as follows:
https://www.physicsforums.com/attachments/7915
https://www.physicsforums.com/attachments/7916
https://www.physicsforums.com/attachments/7917
https://www.physicsforums.com/attachments/7918Hope that helps ...
Peter
I am focused on Chapter 11: Metric Spaces and Normed Spaces ... ...
I need some help with the polarization formula for the complex case ...
Garling's statement of the polarization formulae reads as follows:https://www.physicsforums.com/attachments/7914In the above text from Garling we read the following:" ... ... in the complex case we have the polarization formula \(\displaystyle \langle x,y \rangle = \frac{1}{4} \left( \sum_{ j = 0 }^3 i^j \| x + i^j y \|^2 \right)\) ... ... "
Can someone please demonstrate how to prove that \(\displaystyle \langle x,y \rangle = \frac{1}{4} \left( \sum_{ j = 0 }^3 i^j \| x + i^j y \|^2 \right)\) ...?Help will be appreciated ...
Peter
==========================================================================================***NOTE***
It may help readers of the above post to know Garling's notation and approach to inner-product spaces ... ... so I am providing the same ... as follows:
https://www.physicsforums.com/attachments/7915
https://www.physicsforums.com/attachments/7916
https://www.physicsforums.com/attachments/7917
https://www.physicsforums.com/attachments/7918Hope that helps ...
Peter