- #1
tshafer
- 42
- 0
While deriving the Helmholtz Green function in Sakurai we come across the integral
[tex]\int_{-\infty}^{\infty}q\,dq\,\frac{e^{iq|\vec x-\vec x'|}-e^{-iq|\vec x-\vec x'|}}{q^2-k^2\mp i\varepsilon'}[/tex]
This equation has poles at [tex]q \simeq \pm k\pm i\varepsilon'[/tex], however when doing the residue calculation it seems that Sakurai only treats the poles [tex]k+i\varepsilon'[/tex] and [tex]k-i\varepsilon'[/tex], but not the companion poles poles [tex]-k-i\varepsilon'[/tex] and [tex]-k+i\varepsilon'[/tex].
Is there a physical reason for this I am missing or do I have a mathematical error? If included, it seems the other poles would give both the [tex]\psi^{(\pm)}[/tex] solutions over again?
Thanks!
Tom
[tex]\int_{-\infty}^{\infty}q\,dq\,\frac{e^{iq|\vec x-\vec x'|}-e^{-iq|\vec x-\vec x'|}}{q^2-k^2\mp i\varepsilon'}[/tex]
This equation has poles at [tex]q \simeq \pm k\pm i\varepsilon'[/tex], however when doing the residue calculation it seems that Sakurai only treats the poles [tex]k+i\varepsilon'[/tex] and [tex]k-i\varepsilon'[/tex], but not the companion poles poles [tex]-k-i\varepsilon'[/tex] and [tex]-k+i\varepsilon'[/tex].
Is there a physical reason for this I am missing or do I have a mathematical error? If included, it seems the other poles would give both the [tex]\psi^{(\pm)}[/tex] solutions over again?
Thanks!
Tom