- #1
Needhelpzzz
- 2
- 0
Let V be the linear space of all real polynomials p(x) of degree < n. If p ∈ V, define q = T(p) to mean that q(t) = p(t + 1) for all real t. Prove that T has only the eigenvalue 1. What are the eigenfunctions belonging to this eigenvalue?
What I did was
T(p)= (lamda) p = q (Lamda) p(t+1) = q(t) (Lamda) p(t+1) = p(t+1)
(Lamda) = 1
Eigenfunctions are nonzero constant polynomials.
Is this right though?
What I did was
T(p)= (lamda) p = q (Lamda) p(t+1) = q(t) (Lamda) p(t+1) = p(t+1)
(Lamda) = 1
Eigenfunctions are nonzero constant polynomials.
Is this right though?