Polynomial Rings - Z[x]/(x^2) and Z[x^2 + 1>

In summary, the structures of the rings \mathbb{Z}[x]/<x^2> and \mathbb{Z}[x]/<x^2 + a> are different, as the operations are not the same. In the case of \mathbb{Z}[x]/<x^2>, the product is determined by the remainder of the Euclidean division, while in \mathbb{Z}[x]/<x^2 + a>, the product is determined by the remainder of the Euclidean division by (x^2 + a). While it is not possible to carry out Euclidean divisions in \mathbb{Z}[x], it is still possible to demonstrate the structure
  • #1
Math Amateur
Gold Member
MHB
3,998
48
I am trying to get a good understanding of the structure of the rings [TEX] \mathbb{Z}[x]/<x^2> [/TEX] and [TEX] \mathbb{Z}[x]/<x^2 +1> [/TEX].

I tried to first deal with the rings [TEX] \mathbb{R}[x]/<x^2> [/TEX] and [TEX] \mathbb{R}[x]/<x^2 +1> [/TEX] as they seemed easier to deal with ... my thinking ... and my problems are as follows: (Would really appreciate clarification)Following an example I found in Gallian (page 257), first consider [TEX] \mathbb{R}[x]/<x^2> [/TEX] where [TEX] \mathbb{R}[x] [/TEX] is the ring of polynomials with real co-efficients.

Then [TEX] \mathbb{R}[x]/<x^2> = \{ g(x) + <x^2> | g(x) \in \mathbb{R}[x] \} [/TEX]

But [TEX] \mathbb{R}[x] [/TEX] is a Euclidean Domain and hence possesses a Division Algorithm, so we may write:

[TEX] g(x) = q(x)(x^2) + r(x) [/TEX] where r(x) = 0 or r(x) has degree less than 2.

so we can write r(x) = ax + b where a, b [TEX] \in \mathbb{R} [/TEX]

Thus [TEX] g(x) + <x^2> = q(x)(x^2) + r(x) + <x^2> [/TEX]

= [TEX] r(x) + <x^2> [/TEX] since the ideal [TEX] <x^2> [/TEX] absorbs the term [TEX] q(x)(x^2) + r(x) [/TEX]

= [TEX] ax + b + <x^2> [/TEX]

Thus [TEX] \mathbb{R}[x]/<x^2> = \{ ax + b + <x^2> | a, b \in \mathbb{R} \}[/TEX]

Now, by a similar argument we can demonstrate that

[TEX] \mathbb{R}[x]/<x^2 +1> = \{ ax + b + <x^2 + 1> | a, b \in \mathbb{R} \} [/TEX]

which makes the two rings [TEX] \mathbb{R}[x]/<x^2> [/TEX] and [TEX] \mathbb{R}[x]/<x^2 +1> [/TEX] look to have the same structure?

One of my questions is how exactly are these two ring structures different?

A second worry is that the above demonstration works because [TEX] \mathbb{R}[x] [/TEX] is a Euclidean Domain ... so the same argument as above does not apply to

[TEX] \mathbb{Z}[x] [/TEX] because [TEX] \mathbb{Z}[x] [/TEX] is not a Euclidean Domain and hence we cannot use the Division algorithm.

How do we rigorously demonstrate that

[TEX] \mathbb{Z}[x]/<x^2> = \{ ax + b + <x^2> | a, b \in \mathbb{Z} \} [/TEX] and[TEX] \mathbb{Z}[x]/<x^2 +1> = \{ ax + b + <x^2 + 1> | a, b \in \mathbb{Z} \} [/TEX]

Can someone please help clarify the above problems and issues?

Peter
 
Physics news on Phys.org
  • #2
Peter said:
which makes the two rings [TEX] \mathbb{R}[x]/<x^2> [/TEX] and [TEX] \mathbb{R}[x]/<x^2 +1> [/TEX] look to have the same structure?

One of my questions is how exactly are these two ring structures different?

The operations are not the same. For example, in $\mathbb{R}/<x^2>$ the product is is $[ax+b][a'x+b']=[cx+d]$ where $cx+d$ is the remainder of the eucldean division $(ax+b)(a'x+b'):x^2$ and in $\mathbb{R}/<x^2+1>$ the remainder of the eucldean division $(ax+b)(a'x+b'):(x^2+1)$. By the way, $\mathbb{R}/<x^2+1>$ is naturally isomorphic to $\mathbb{C}$.

How do we rigorously demonstrate that
[TEX] \mathbb{Z}[x]/<x^2> = \{ ax + b + <x^2> | a, b \in \mathbb{Z} \} [/TEX] and
[TEX] \mathbb{Z}[x]/<x^2 +1> = \{ ax + b + <x^2 + 1> | a, b \in \mathbb{Z} \} [/TEX]

Try $p(x)\sim q(x)$ iff there exists $h(x)\in\mathbb{Z}[x]$ such that $p(x)-q(x)=h(x)x^2$ (or $p(x)-q(x)=h(x)(x^2+1)$.
 
Last edited:
  • #3
Fernando Revilla said:
The operations are not the same. For example, in $\mathbb{Z}/<x^2>$ the product is is $[ax+b][a'x+b']=[cx+d]$ where $cx+d$ is the remainder of the eucldean division $(ax+b)(a'x+b'):x^2$ and in $\mathbb{Z}/<x^2+1>$ the remainder of the eucldean division $(ax+b)(a'x+b'):(x^2+1)$. By the way, $\mathbb{Z}/<x^2+1>$ is naturally isomorphic to $\mathbb{C}$.



Try $p(x)\sim q(x)$ iff there exists $h(x)\in\mathbb{Z}[x]$ such that $p(x)-q(x)=h(x)x^2$ (or $p(x)-q(x)=h(x)(x^2+1)$.

Thanks Fernando, most helpful.You write:

"in $\mathbb{Z}/<x^2>$ the product is is $[ax+b][a'x+b']=[cx+d]$ where $cx+d$ is the remainder of the eucldean division $(ax+b)(a'x+b'):x^2$ and in $\mathbb{Z}/<x^2+1>$ the remainder of the eucldean division\(\displaystyle (ax+b)(a'x+b') x^2+1)\)How can we carry out Euclidean Divisions in \(\displaystyle \mathbb{Z}[x]\) when it is not a Euclidean Domain?

Can you clarify? Am i misunderstanding something? :(

Peter
 
  • #4
Peter said:
Thanks Fernando, most helpful.You write:

"in $\mathbb{Z}/<x^2>$ the product is is $[ax+b][a'x+b']=[cx+d]$ where $cx+d$ is the remainder of the eucldean division $(ax+b)(a'x+b'):x^2$ and in $\mathbb{Z}/<x^2+1>$ the remainder of the eucldean division\(\displaystyle (ax+b)(a'x+b') x^2+1)\)How can we carry out Euclidean Divisions in \(\displaystyle \mathbb{Z}[x]\) when it is not a Euclidean Domain?

Can you clarify? Am i misunderstanding something? :(

Peter

Of course, it is a typo, I meant $\mathbb{R}$ instead of $\mathbb{Z}$, I've already corrected it.
 
  • #5
Fernando Revilla said:
Of course, it is a typo, I meant $\mathbb{R}$ instead of $\mathbb{Z}$, I've already corrected it.

OK thanks Fernando, but then I am still left with the puzzle;

I can see your arguments regarding [FONT=MathJax_AMS]R[/FONT][FONT=MathJax_Main][[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]][/FONT][FONT=MathJax_Main]/[/FONT][FONT=MathJax_Main]<[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]>[/FONT][FONT=MathJax_Main][/FONT]

But then how do we rigorously demonstrate that

[FONT=MathJax_AMS]Z[/FONT][FONT=MathJax_Main][[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]][/FONT][FONT=MathJax_Main]/[/FONT][FONT=MathJax_Main]<[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]>[FONT=MathJax_Main]=[/FONT][/FONT][FONT=MathJax_Main]{[/FONT][FONT=MathJax_Math]a[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]b[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]<[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]>[/FONT][FONT=MathJax_Main]|[/FONT][FONT=MathJax_Math]a[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Math]b[/FONT][FONT=MathJax_Main]∈[/FONT][FONT=MathJax_AMS]Z[/FONT][FONT=MathJax_Main]}[/FONT] given that we cannot use the Division Algorithm

Can you help?

Peter[FONT=MathJax_AMS]Z[/FONT][FONT=MathJax_Main][[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]][/FONT][FONT=MathJax_Main]/[/FONT][FONT=MathJax_Main]<[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]>[FONT=MathJax_Main]=[/FONT][/FONT][FONT=MathJax_Main]{[/FONT][FONT=MathJax_Math]a[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]b[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]<[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]>[/FONT][FONT=MathJax_Main]|[/FONT][FONT=MathJax_Math]a[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Math]b[/FONT][FONT=MathJax_Main]∈[/FONT][FONT=MathJax_AMS]Z[/FONT][FONT=MathJax_Main]}[/FONT]
 
  • #6
Peter said:
But then how do we rigorously demonstrate that [FONT=MathJax_AMS]Z[/FONT][FONT=MathJax_Main][[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]][/FONT][FONT=MathJax_Main]/[/FONT][FONT=MathJax_Main]<[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]>[FONT=MathJax_Main]=[/FONT][/FONT][FONT=MathJax_Main]{[/FONT][FONT=MathJax_Math]a[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Math]b[/FONT][FONT=MathJax_Main]+[/FONT][FONT=MathJax_Main]<[/FONT][FONT=MathJax_Math]x[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]>[/FONT][FONT=MathJax_Main]|[/FONT][FONT=MathJax_Math]a[/FONT][FONT=MathJax_Main],[/FONT][FONT=MathJax_Math]b[/FONT][FONT=MathJax_Main]∈[/FONT][FONT=MathJax_AMS]Z[/FONT][FONT=MathJax_Main]}[/FONT] given that we cannot use the Division Algorithm

If $p(x)=a_nx^n+\ldots+a_2x^2+a_1x+a_0\in\mathbb{Z}[x]$, then $p(x)-(a_0+a_1x)=x^2h(x)$ with $h(x)\in\mathbb{Z}[x]$, so $p(x)+(x^2)=(a_0+a_1x)+(x^2)$ i.e. $[p(x)]=[a_0+a_1x]$.
 
  • #7
Fernando Revilla said:
If $p(x)=a_nx^n+\ldots+a_2x^2+a_1x+a_0\in\mathbb{Z}[x]$, then $p(x)-(a_0+a_1x)=x^2h(x)$ with $h(x)\in\mathbb{Z}[x]$, so $p(x)+(x^2)=(a_0+a_1x)+(x^2)$ i.e. $[p(x)]=[a_0+a_1x]$.

Thanks again Fernando, that has made the case for \(\displaystyle \mathbb{Z}[x]/<x^2>\) very clear.

But maybe I did not ask a general enough question because I cannot see how the abve would work for \(\displaystyle \mathbb{Z}[x]/<x^2 + a >\) where \(\displaystyle a \in \mathbb{Z} \) - since then it seems that you would have to use the Division Algorithm.

Can someone please clarify this for me?

Peter
 
  • #8
Peter said:
But maybe I did not ask a general enough question because I cannot see how the abve would work for \(\displaystyle \mathbb{Z}[x]/<x^2 + a >\) where \(\displaystyle a \in \mathbb{Z} \) - since then it seems that you would have to use the Division Algorithm.

Can someone please clarify this for me?

I give you a hint. Suppose $p(x)\in\mathbb{Z}[x]$ has degree $\geq 2$, for example $p(x)=3x^3+7x^2-6x+5$. We have to proof that there exists $\alpha x+\beta\in\mathbb{Z}[x]$ such that $$p(x)-(\alpha x +\beta)=h(x)(x^2+1)\mbox { for some }h(x)\in\mathbb{Z}[x]\qquad (*)$$ The polynomial $h(x)$ has necessarily the form $h(x)=b_1x+b_0$. Now, identify coefficients in $(*)$ and you'll easily verify that there exists $\alpha x +\beta=-9x-2$. Try to generalize but please, show some work before asking.
 
  • #9
Fernando Revilla said:
I give you a hint. Suppose $p(x)\in\mathbb{Z}[x]$ has degree $\geq 2$, for example $p(x)=3x^3+7x^2-6x+5$. We have to proof that there exists $\alpha x+\beta\in\mathbb{Z}[x]$ such that $$p(x)-(\alpha x +\beta)=h(x)(x^2+1)\mbox { for some }h(x)\in\mathbb{Z}[x]\qquad (*)$$ The polynomial $h(x)$ has necessarily the form $h(x)=b_1x+b_0$. Now, identify coefficients in $(*)$ and you'll easily verify that there exists $\alpha x +\beta=-9x-2$. Try to generalize but please, show some work before asking.

Thanks Fernando.

Just working on this now ... but please permit one question ... as I am working ...

You write:

"The polynomial $h(x)$ has necessarily the form $h(x)=b_1x+b_0$..."

Why is this the case?

Peter
 
  • #10
Take a particular example:

Take \(\displaystyle p(x) \in \mathbb{Z}[x] \) to be

\(\displaystyle p(x) = 3x^3 + 7x^2 -6x + 5 \)

Then p(x0 is a member of the coset \(\displaystyle \alpha x + \beta \) if

\(\displaystyle p(x) - (\alpha x + \beta ) = (b_1 x + b_0) (x^2 + 1 \) ... (1)

If we assume \(\displaystyle (\alpha x + \beta ) \) = (-9x - 2) then we have

LHS of (1) = \(\displaystyle 3x^3 + 7x^2 + 3x + 7 \)

and

RHS of (1) = \(\displaystyle b_1 x^3 + b_0 x^2 = b_1 x + b_0 \)

So if we put \(\displaystyle b_1 = 3 \) and \(\displaystyle b_0 = 7 \) then LHS = RHS and we have verified (1)Generalise: (not quite sure here)

If p(x) is a member of \(\displaystyle <x^2 + 1> \) then

\(\displaystyle p(x) - ( \alpha x + \beta ) = (b_0 + b_1 x) (x^2 + 1) \)

This is true if \(\displaystyle \alpha = b_1 \) and \(\displaystyle \beta = b_0 \)

Thus

\(\displaystyle p(x) + <x^2 + 1> = ( \alpha x + \beta) + <x^2 + 1> \)

i.e \(\displaystyle <p(x)> = (\alpha x + \beta )\)

Is that OK? (I am not sure of the genalisation)

Peter
 
  • #11
Peter said:
Is that OK? (I am not sure of the genalisation)
Yes, it is OK. You can generalize using following theorem:

Theorem. Let $D$ be an integral domain, $f(x), g(x)\in D[x]$ with $g(x)\neq 0$. Suppose that $\mbox{deg }g(x)=m$ with leading coefficiet $b_m$. Then, there exist $k\in\mathbb{N}$, $q(x),r(x)\in D[x]$ with $\mbox{deg }r(x)<\mbox{deg }g(x)$ such that: $$b_m^kf(x)=q(x)g(x)+r(x)$$ Now, apply this theorem for $D=\mathbb{Z}$, $g(x)=x^2+1$ (so $b_m=1$) and you'll obtain

$f(x)=q(x)(x^2+1)+\alpha x+\beta$ i.e. $f(x)+(x^2+1)=\alpha x +\beta +(x^2+1)$

Alternatively to that theorem, choose a general polynomial $f(x)=a_nx^n+\ldots+a_1x+a_0$ and identify coefficients in $f(x)-(\alpha x+\beta)=(x^2+1)(b_{n-2}x^{n-2}+\ldots+b_0)$.
 
Last edited:
  • #12
Fernando Revilla said:
Yes, it is OK. You can generalize using following theorem:

Theorem. Let $D$ be an integral domain, $f(x), g(x)\in D[x]$ with $g(x)\neq 0$. Suppose that $\mbox{deg }g(x)=m$ with leading coefficiet $b_m$. Then, there exist $k\in\mathbb{N}$, $q(x),r(x)\in D[x]$ with $\mbox{deg }r(x)<\mbox{deg }g(x)$ such that: $$b_m^kf(x)=q(x)g(x)+r(x)$$ Now, apply this theorem for $D=\mathbb{Z}$, $g(x)=x^2+1$ (so $b_m=1$) and you'll obtain

$f(x)=q(x)(x^2+1)+\alpha x+\beta$ i.e. $p(x)+(x^2+1)=\alpha x +\beta +(x^2+1)$

Alternatively to that theorem, choose a general polynomial $f(x)=a_nx^n+\ldots+a_1x+a_0$ and identify coefficients in $f(x)-(\alpha x+\beta)=(x^2+1)(b_{n-2}x^{n-2}+\ldots+b_0)$.

Fernando,

My thanks for all your helpful guidance

Peter
 

FAQ: Polynomial Rings - Z[x]/(x^2) and Z[x^2 + 1>

What is a polynomial ring?

A polynomial ring is a mathematical structure consisting of polynomials in one or more variables and coefficients from a given field or ring. It is denoted by R[x], where R is the underlying ring.

What does Z[x]/(x^2) mean?

Z[x]/(x^2) is a quotient ring, also known as a factor ring, where Z[x] is the polynomial ring with integer coefficients and (x^2) is the ideal generated by the polynomial x^2. This means that all elements in Z[x] are divided by x^2 and the remainder is taken as the representative of the coset in the quotient ring.

Can you give an example of a polynomial in Z[x]/(x^2)?

An example of a polynomial in Z[x]/(x^2) is 2x + 1. This polynomial can be written as (x^2 + 1)q(x) + r(x), where q(x) and r(x) are the quotient and remainder respectively. In this case, q(x) = 0 and r(x) = 2x + 1, making 2x + 1 the representative of the coset in Z[x]/(x^2).

What is the significance of Z[x^2 + 1]?

Z[x^2 + 1] is a polynomial ring with coefficients in the ring of integers and the variable x^2 + 1. This ring is significant in number theory and algebraic geometry, as it can be used to study algebraic number fields and algebraic curves.

How is Z[x]/(x^2) different from Z[x^2 + 1]?

Z[x]/(x^2) is a quotient ring where all elements are divided by x^2, while Z[x^2 + 1] is a polynomial ring with the variable x^2 + 1. Additionally, Z[x]/(x^2) contains only polynomials of degree 1 or less, while Z[x^2 + 1] can contain polynomials of any degree.

Similar threads

Back
Top