- #1
BRN
- 108
- 10
Hi guis, i need your help...
1. Homework Statement
Evaluate the rotational and vibrational contributions to the heat capacity of a gas of DBr (D=deuterium, Br=mixture at 50% of 79Br and 81Br) at 380 K temperature, knowing that the bond distance is 1.41 Å and the vibration frequency of 1H79Br is ##\nu_0=2650cm^{-1}##
##R_M##=1.41 Å=##1.41*10^{-10}[m]##
## \nu_0=2650[cm^{-1}]= \nu_0=265000[m^{-1}]=7.9235*10^{13}[Hz] ##
Two isotopes have the same binding distance with inertia momentum:
$$ I_1= \mu_1R_M^2= \frac{79}{80} \frac{10^{-3}}{N_A}R_M^2=3.2598*10^{-47}[Kgm^2] $$
$$ I_2= \mu_2R_M^2= \frac{81}{82} \frac{10^{-3}}{N_A}R_M^2=3.2608*10^{-47}[Kgm^2] $$
$$ I_{tot}=I_1+I_2=6.5206*10^{-47}[Kgm^2] $$
The characteristic rotational temperature is:
$$ \Theta_{rot}= \frac{ \hbar^2}{2I_{tot}k_B}=6.1760[K] $$
I'm in ##T >> \Theta_{rot}## case, then:
$$ C_{v,rot}=k_B=1.3806-10^{-23}[J/K] $$
and
$$ C_{v,vib}= \frac{k_B( \beta \hbar \omega)^2e^{- \beta \hbar \omega}}{(1-e^{- \beta \hbar \omega})^2} $$
with
## \beta= \frac{1}{k_BT}## and ## \omega=2 \pi \nu_0=4.9784*10^{14}[rad/s] ##
$$ \Rightarrow C_{v,vib}=6.2365*10^{-26}[J/K] $$
##C_{v,vib}## is wrong, why?
SOLUTIONS:##C_{v,rot}=k_B=1.3806-10^{-23}[J/K]; C_{v,vib}=5.597*10^{-25}[J/K]##
Thanks at all!
1. Homework Statement
Evaluate the rotational and vibrational contributions to the heat capacity of a gas of DBr (D=deuterium, Br=mixture at 50% of 79Br and 81Br) at 380 K temperature, knowing that the bond distance is 1.41 Å and the vibration frequency of 1H79Br is ##\nu_0=2650cm^{-1}##
The Attempt at a Solution
##R_M##=1.41 Å=##1.41*10^{-10}[m]##
## \nu_0=2650[cm^{-1}]= \nu_0=265000[m^{-1}]=7.9235*10^{13}[Hz] ##
Two isotopes have the same binding distance with inertia momentum:
$$ I_1= \mu_1R_M^2= \frac{79}{80} \frac{10^{-3}}{N_A}R_M^2=3.2598*10^{-47}[Kgm^2] $$
$$ I_2= \mu_2R_M^2= \frac{81}{82} \frac{10^{-3}}{N_A}R_M^2=3.2608*10^{-47}[Kgm^2] $$
$$ I_{tot}=I_1+I_2=6.5206*10^{-47}[Kgm^2] $$
The characteristic rotational temperature is:
$$ \Theta_{rot}= \frac{ \hbar^2}{2I_{tot}k_B}=6.1760[K] $$
I'm in ##T >> \Theta_{rot}## case, then:
$$ C_{v,rot}=k_B=1.3806-10^{-23}[J/K] $$
and
$$ C_{v,vib}= \frac{k_B( \beta \hbar \omega)^2e^{- \beta \hbar \omega}}{(1-e^{- \beta \hbar \omega})^2} $$
with
## \beta= \frac{1}{k_BT}## and ## \omega=2 \pi \nu_0=4.9784*10^{14}[rad/s] ##
$$ \Rightarrow C_{v,vib}=6.2365*10^{-26}[J/K] $$
##C_{v,vib}## is wrong, why?
SOLUTIONS:##C_{v,rot}=k_B=1.3806-10^{-23}[J/K]; C_{v,vib}=5.597*10^{-25}[J/K]##
Thanks at all!
Last edited: