- #1
zenterix
- 708
- 84
- Homework Statement
- This problem is from Apostol's Calculus, Volume I.
A particle undergoes simple harmonic motion. Initially its displacement is 1, its velocity is 1, and its acceleration is -12.
Compute its displacement and acceleration when the velocity is ##\sqrt{8}##.
- Relevant Equations
- ##F=ma##
A spring attached to a mass undergoes simple harmonic motion.
From Newton's second law we have ##ma=-qx## where ##q## is the spring constant.
$$x''+\frac{q}{m}x=0$$
A second order equation with constant coefficients.
The characteristic equation is ##r^2+\frac{q}{m}=0##. The roots are complex.
The discriminant is ##\Delta = -\frac{4q}{m}<0##.
Let ##k=\frac{1}{2}\sqrt{-\Delta}=\frac{1}{2}\sqrt{\frac{4q}{m}}##
Then the general solution to our differential equation is
$$x(t)=c_1\cos{kt}+c_2\sin{kt}$$
Since ##x(0)=1## then ##c_1=1##.
Then
$$v(t)=-k\sin{kt}+c_2k\cos{kt}$$
Since ##v(0)=1## then ##c_2=\frac{1}{k}##.
Then,
$$a(t)=-\frac{k}{m}x(t)$$
Since ##a(0)=-\frac{k}{m}=-12## then we can solve for ##q=\frac{24^2m}{4}##.
Thus, at this point we have
$$x(t)=\cos{kt}+\frac{1}{k}\sin{kt}$$
$$v(t)=-k\sin{kt}+\cos{kt}$$
$$a(t)=-\frac{k}{m}\cos{kt}-\frac{1}{m}\sin{kt}$$
Suppose ##v(t)=2\sqrt{2}##.
If we can solve for the corresponding ##t## then we can plug this ##t## into ##x(t)## and ##a(t)##.
But how?
From Newton's second law we have ##ma=-qx## where ##q## is the spring constant.
$$x''+\frac{q}{m}x=0$$
A second order equation with constant coefficients.
The characteristic equation is ##r^2+\frac{q}{m}=0##. The roots are complex.
The discriminant is ##\Delta = -\frac{4q}{m}<0##.
Let ##k=\frac{1}{2}\sqrt{-\Delta}=\frac{1}{2}\sqrt{\frac{4q}{m}}##
Then the general solution to our differential equation is
$$x(t)=c_1\cos{kt}+c_2\sin{kt}$$
Since ##x(0)=1## then ##c_1=1##.
Then
$$v(t)=-k\sin{kt}+c_2k\cos{kt}$$
Since ##v(0)=1## then ##c_2=\frac{1}{k}##.
Then,
$$a(t)=-\frac{k}{m}x(t)$$
Since ##a(0)=-\frac{k}{m}=-12## then we can solve for ##q=\frac{24^2m}{4}##.
Thus, at this point we have
$$x(t)=\cos{kt}+\frac{1}{k}\sin{kt}$$
$$v(t)=-k\sin{kt}+\cos{kt}$$
$$a(t)=-\frac{k}{m}\cos{kt}-\frac{1}{m}\sin{kt}$$
Suppose ##v(t)=2\sqrt{2}##.
If we can solve for the corresponding ##t## then we can plug this ##t## into ##x(t)## and ##a(t)##.
But how?